
Finite Factored Sets

Scott Garrabrant
Machine Intelligence Research Institute

(Part 1, Title Slides) 1/18



Some Context

For people who are not already familiar with my work:
• Reduce existential risk.
• Figure out how to align advanced AI.
• Become less confused about intelligence/optimization/agency.
• Develop a theory of agents embedded in the environment they are optimizing.
• Do a bunch of weird math/philosophy.

For people who are already familiar with my work:
• According to my own personal aesthetics, the subject of this talk is about as
exciting as Logical Induction.
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Factoring the Talk

• This talk can be split into 2 parts:
• Part 1: a short, pure math, combinatorics talk

• Part 2: a more applied and philosophical main talk

• This talk can also be split into 5 parts, di↵erentiated by color: Title Slides,
Motivation, Table of Contents, Main Body, and Examples.

• This gives 10 distinct sections, labeled by the ordered pair on the bottom left.
• Slide numbers are given below:

Part 1: Part 2:
Short Combinatorics Talk The Main Talk

Title Slides 1 7
Motivation 2 8

Table of Contents 3 9
Main Body 4-5 10, 12-15, 18
Examples 6 11, 16-17

(Part 1, Table of Contents) 3/18



Set Partitions

A partition of a set S is a set X of nonempty subsets of S , called parts, such that for
each s 2 S there exists a unique part in X that contains s.

• A partition of S is a way to view S as a disjoint union.
• Part(S) is the set of all partitions of S .
• X is trivial if it has exactly one part.
• [s]X is the unique part in X containing s.
• s ⇠X t if s and t are in the same part in X .
• X �S Y (X is finer than Y and Y is coarser than X )
if for all s, t 2 S , s ⇠X t implies s ⇠Y t.

• X _S Y (The common refinement of X and Y ) is the
coarsest partition that is finer than both X and Y .
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Set Factorizations

A factorization of a set S is a set B of nontrivial partitions of S , called factors, such
that for each way of choosing one part from each factor in B , there exists a unique
element of S in the intersection of those parts.
• A factorization of S is a way to view S as a product.
• If B = {b0, . . . , bn} is a factorization of S , then there exists a bijection between S
and b0 ⇥ · · ·⇥ bn given by s 7! ([s]b0 , . . . , [s]bn). Thus, |S | =

Q
b2B |b|.

• A factor must be a partition into parts of equal size.
• Fact(S) is the set of all factorizations of S .
• A finite factored set F is a pair (S ,B), where S is a finite set and B 2 Fact(S).

Partition: Set X of non-empty
subsets of S such that the obvious
function from the disjoint union of the
elements of X to S is a bijection.

Factorization: Set B of non-trivial
partitions of S such that the obvious
function to the product of the
elements of B from S is a bijection.
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Enumerating Factorizations

What are the factorizations of {0, 1, 2, 3}?

{{{0}, {1}, {2}, {3}}} 0 1 2 3

⇢
{{0,1}, {2,3}},
{{0,2}, {1,3}}

�
0 1
2 3

⇢
{{0,1}, {2,3}},
{{0,3}, {1,2}}

�
0 1
3 2

⇢
{{0,2}, {1,3}},
{{0,3}, {1,2}}

�
0 2
3 1

|S | |Fact(S)| |S | |Fact(S)|
0 1 13 1

1 1 14 8648641

2 1 15 1816214401

3 1 16 181880899201

4 4 17 1

5 1 18 45951781075201

6 61 19 1

7 1 20 3379365788198401

8 1681 21 1689515283456001

9 5041 22 14079294028801

10 15121 23 1

11 1 24 4454857103544668620801

12 13638241 25 538583682060103680001

This sequence was not on OEIS!

End of Part 1
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The Main Talk

(It’s About Time)

Scott Garrabrant
Machine Intelligence Research Institute
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The Pearlian Paradigm

Season

Sprinkler Rain

Wet

Slippery

The Pearlian causal inference paradigm is really awesome.
• Given a collection of variables and a joint probability
distribution over those variables, Pearl can infer causal
(i.e. temporal) relationships between the variables.

• Can infer temporal data (causation) from statistical
data (correlation)!

However, I claim that the Pearlian paradigm is cheating.
• “Given a collection of variables” is actually hiding a lot
of the work!

• It doesn’t infer temporal data from statistical data
alone. It uses statistical data and factorization data.

• This issue is also related to a failure to adequately
handle abstraction and determinism.
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We Can Do Better

We will introduce an alternative to the Pearlian paradigm that does not rely on being
given factorization data, and works better with abstraction and determinism.
Our approach will be heavily inspired by Pearl, but will not involve graphical models.

Pearl This Talk Slide
A Given Collection of Variables All Partitions of a Given Set 4

Directed Acyclic Graph Finite Factored Set 5
Directed Path Between Nodes “Time”

10
No Common Ancestor “Orthogonality”

d-Separation “Conditional Orthogonality” 12
Compositional Graphoid Compositional Semigraphoid 13

d-Separation $ Conditional Independence The Fundamental Theorem 14
Causal Inference Temporal Inference 15

Many Many Applications Many Many Applications 18
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Time and Orthogonality

Let F = (S ,B) be a finite factored set, and let X ,Y 2 Part(S) be partitions of S .

History

The history of X , written hF (X ), is the smallest set of factors H ✓ B such that for all
s, t 2 S , if s ⇠b t for all b 2 H , then s ⇠X t.

Time

We say X is weakly before Y , written X F Y , if hF (X ) ✓ hF (Y ).
We say X is strictly before Y , written X <F Y , if hF (X ) ⇢ hF (Y ).

Orthogonality

We say X and Y are orthogonal, written X ?F Y , if hF (X ) \ hF (Y ) = {}.
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Game of Life

Let S be the set of all game of life computations starting from an

[�n, n]⇥ [�n, n] board. |S | = 2
(2n+1)2

, the number of initial board states.

• Let R = {(r , c , t) 2 Z3 | 0  t  n, |r |  n � t, |c |  n � t} (i.e.

cells computable from the initial [�n, n]⇥ [�n, n] board.)

• For (r , c , t) 2 R , let `(r , c , t) ✓ S be the set of all computations

such that the cell at row r and column c is alive at time t.

• For (r , c , t) 2 R , let L(r ,c,t) = {`(r , c , t), S \ `(r , c , t)}.
• Let F = (S ,B), where B = {L(r ,c,0) | �n  r , c  n}.

Fix X = L(rX ,cX ,tX ),Y = L(rY ,cY ,tY ), where (rX , cX , tX ), (rY , cY , tY ) 2 R .

• hF (X ) = {L(r ,c,0) 2 B | |rX � r |  tX , |cX � c |  tX}.

• X <F Y if and only if tX < tY and |rY � rX |, |cY � cX |  tY � tX .

• X ?F Y if and only if |rY � rX | > tY + tX or |cY � cX | > tY + tX .
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Conditional Orthogonality

Let F = (S ,B) be a finite factored set, let X ,Y ,Z 2 Part(S), and let E ✓ S .

Conditional History

The conditional history of X given E , written hF (X |E ), is the smallest set of factors
H ✓ B satisfying the following two conditions:

• For all s, t 2 E , if s ⇠b t for all b 2 H, then s ⇠X t.

• For all s, t 2 E and r 2 S , if r ⇠b0 s for all b0 2 H and r ⇠b1 t for all b1 2 B \ H, then r 2 E .

Note: Without the second condition, conditional history would not even be well defined.

Conditional Orthogonality

We say X and Y are orthogonal given E , written X ?F Y | E , if
hF (X |E ) \ hF (Y |E ) = {}. We say X and Y are orthogonal given Z , written
X ?F Y | Z , if X ?F Y | z for all z 2 Z .
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Compositional Semigraphoid Axioms

Theorem (Compositional Semigraphoid Axioms)

Let F = (S ,B) be a finite factored set. Let X ,Y ,Z ,W 2 Part(S) be partitions of S .
• If X ?F Y | Z , then Y ?F X | Z . (symmetry)
• If X ?F (Y _S W ) | Z , then X ?F Y | Z and X ?F W | Z . (decomposition)
• If X ?F (Y _S W ) | Z , then X ?F Y | (Z _S W ). (weak union)
• If X ?F Y | Z and X ?F W | (Z _S Y ), then X ?F (Y _S W ) | Z . (contraction)
• If X ?F Y | Z and X ?F W | Z , then X ?F (Y _S W ) | Z . (composition)

These are a standard set of axioms discussed in the graphical models literature, slightly
modified to be in the language of partitions of S , rather than sets of variables.
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The Fundamental Theorem

Probability Distribution on a Finite Factored Set

A probability distribution on a finite factored set F = (S ,B) is a probability distribution
P on S such that P(s) =

Q
b2B P([s]b) for all s 2 S .

Theorem (The Fundamental Theorem of Finite Factored Sets)

Let F = (S ,B) be a finite factored set, and let X ,Y ,Z 2 Part(S) be partitions of S .
Then X ?F Y | Z if and only if for all probability distributions P on F , and all x 2 X ,
y 2 Y , and z 2 Z , we have P(x \ z) · P(y \ z) = P(x \ y \ z) · P(z).

The fundamental theorem allows us to infer orthogonality data from probabilistic data.
Next, we will show how to infer temporal data from orthogonality data.
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Temporal Inference

• ⌦ is a finite set, which is our sample space.
• A model of ⌦ is a pair (F , f ), where F = (S ,B) is a finite factored set, and
f : S ! ⌦. (f need not be injective or surjective.)

• If X 2 Parts(⌦), f �1(X ) 2 Parts(S) is given by s ⇠f �1(X ) t , f (s) ⇠X f (t).
• An orthogonality database is a pair D = (O,N), where O and N are each sets of
triples of partitions of ⌦.

• (F , f ) satisfies D if:
• f �1

(X )?F f �1
(Y ) | f �1

(Z ) whenever (X ,Y ,Z ) 2 O, and

• ¬(f �1
(X )?F f �1

(Y ) | f �1
(Z )) whenever (X ,Y ,Z ) 2 N.

• X <D Y if f �1(X ) <F f �1(Y ) for all models (F , f ) that satisfy D.

But how does this compare to Pearlian temporal inference?
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Two Binary Variables (Pearl)

Let X and Y be two binary variables. Pearl asks:

“Are X and Y independent?”

Yes No

X Y

X

Y

or

Y

X

or

X Y

Z

In either case, no temporal relationship can be concluded.
The Pearlian ontology blinds us from the natural next question:

“Are X and (X XOR Y ) independent?”

If yes, the finite factored set paradigm can actually conclude that X is before Y !
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Two Binary Variables (Factored Sets)

• Let ⌦ = {00, 01, 10, 11}.
• Let X = {{00, 01}, {10, 11}}. (What is the first bit?)

• Let Y = {{00, 10}, {01, 11}}. (What is the second bit?)

• Let Z = {{00, 11}, {01, 10}}. (Do the bits match?)

• Let D = (O,N), where O = {(X ,Z , {⌦})} and N = {(Z ,Z , {⌦})}.

Theorem

X <D Y .

Proof. Let (F , f ) satisfy D. Let HX = hF (f �1
(X )), HY = hF (f �1

(Y )), and HZ = hF (f �1
(Z )).

Since (X ,Z , {⌦}) 2 O and (Z ,Z , {⌦}) 2 N, we have HX \ HZ = {} and HZ 6= {}.
Since X ⌦ Y _⌦ Z , HX ✓ HY [ HZ . Since HX \ HZ = {}, this implies HX ✓ HY .

Similarly, since Z ⌦ X _⌦ Y , HZ ✓ HX [ HY .

If HX = HY , then {} 6= HZ = (HX [ HY ) \ HZ = HX \ HZ = {}, a contradiction.

Thus HX 6= HY , so HX ⇢ HY , so f �1
(X ) <F f �1

(Y ), so X <D Y . ⇤
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Applications/Future Work/Speculation

Inference:
• Decidablity of Temporal
Inference

• E�cient Temporal Inference
• Conceptual Inference
• Temporal Inference from
Raw Data and Fewer
Ontological Assumptions

• Temporal Inference with
Deterministic Relationships

• Time without Orthogonality
• Conditioned Factored Sets

Infinity:
• Extending
Definitions to the
Infinite Case

• The Fundamental
Theorem of Finite
Dimensional
Factored Sets

• Continuous Time
• New Lens on
Physics

The End

Embedded Agency:
• Embedded Observations
• Counterfactability
• Cartesian Frames Successor
• Unraveling Causal Loops
• Conditional Time
• Logical Causality from
Logical Induction

• Orthogonality as Simplifying
Assumptions for Decisions

• Conditional Orthogonality
as Abstraction Desideratum
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