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Outline

Rough plan for this talk:

[ 5 mins] The problem of logical induction

[10 mins] Motivation from Al safety and other fields
[30 mins] Beamer presentation of technical results
[15 mins] Implications and take-aways
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Credences should change with time spent thinking / computing:
== Probability theory gives rules

relate to each other and change
with new observations,
#1. P(Dyy=7) 10% 10% | 10% assuming logical omniscience...

#2. P(D,,=7 | snapshot) l 10%‘15%116% l—— ...but what rules should
credences follow over time, as

computation is carried out on

#3. P(10% digit of V(10) = 7) @ 1% 0% observations that have
already been made?

snapshot for #2: _
_ - Also, 50% would be a worse answer to start with

here... can we make a principled theory from which
this claim would follows?

Goal: call the purple processes “logical induction”
and figure out how it should work.
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Why develop a theoretical model
of logical induction?

Q: How can we reason about a highly capable Al system before it exists?
A: One approach is to model it as “good at stuff”, like:
choosing actions to achieve objectives given beliefs

— it roughly obeys rational choice theory (e.g. VNM theorem)

updating beliefs according to new evidence
—> it roughly obeys probability theory (e.g. Bayes’ theorem)

computing belief updates with resource limitations

we call the process of refining logical uncertainties “logical induction”.
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Past desiderata for “good reasoning”
under logical uncertainty:

10.

11.
12.
13.

computable approximability — the process should be approximable by a Turing Machine. (Demsky, 2012)
coherent limit — after infinite time, credences should satisfy the laws of probability theory, such as
(A=>B)=(P(A)<P(B)). (Gaifman, 1964).

partial coherence: credences at finites time should roughly satisfy some coherence properties; such as
Q(A~B)+Q(AvB)=Q(A) +Q(B) (Good, 1950; Hacking, 1967)

calibration — the process should be right roughly 90% of the time when it’'s 90% confident. (Savage, 1967)

introspection — the process should be able to describe and reason about itself. (Hintikka, 1962; Fagin, 1995;
Christiano, 2013; Campbell-Moore, 2015)

self-trust — it should understand that it is reliable and that it will become more reliable with time
(Hilbert, 1900)

non-dogmatism — it does not assign 100% or 0% credence to claims unless they have been proven or
disproven, respectively (Carnap, 1962; Gaifman, 1982; Snir, 1982)

PA-capable — it should assign non-zero probability to the consistency of Peano Arithmetic, i.e. to the set of
consistent completions of PA.

rough inexploitability — it should not be easy to “"dutch book” the process / make bets against it that are
guaranteed to win (von Neumann and Morgenstern 1944; de Finetti 1979)

Gaifman inductivity — it should come to believe (V x, f(x)) in the limit as it examines every example of x and
confirms f(x) (Gaifman 1964, Hutter 2013)

Efficiency — it runs in polynomial (preferably quadratic) time
Decision-relevant — should be able to focus computation on questions relevant to decisions.
Updates on old evidence (Glymour, 1980)
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Let’s defer applications until later in the talk, when
the idea has been made more precise.

2~ N
(@ @

-’

Any questions far about the problem itself
before we get into formal definitions?
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Formalizing logical induction

PowerPoint 2 Beamer
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Formalizing logical induction

Beamer = PowerPoint
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The current state of
logical uncertainty theory

Domain of Agent Minimalistic
Study Concept

Sufficient | Desirability Arguments | Feasibility
Conditions

rational choice

theory. /. VNM utility VNM axioms Dutch book arguments, AIXI, POMDP

) maximizer compelling axioms, ... solvers, ...
economics
. : axioms of
probability Bayesian robabilit Dutch book arguments, Solomonoff
theory updater P Y compelling axioms, ... induction
theory
logical Dutch book
. Garrabrant . i
uncertainty . ?7?7? arguments, historical LIA2016
inductor

theory \ deside]'ata, /

recent progress
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Paths forward

1. Improving logical uncertainty theory
(minimalistic conditions, more
consequences...)

Using Garrabrant inductors / LIA2016

to pose and solve new problems in Al
alignment

MIRVs Other approaches to Al alignment*

fOCUS * Must eventually address logical uncertainty implicitly or
explicitly, so expect some convergence.
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How will logical induction
be applicable?

Conceptual tools for reasoning about incentives, competition, and goal pursuit are
under-developed for computationally bounded agents. They presume agents are
logically omniscient, because we already had good theoretical models for developing
them that way:

e Game theory and economics:
— Von Neumann-Morgenstern utility theorem
— Nash equilibria and correlated equilibria

— Efficient market theory:
* Fundamental theorems of welfare economics
Coase’s Theorem

— Value of Information (VOI)
 Mechanism design:

— Gibbard—Satterthwaite theorem

— Myerson—Satterthwaite theorem

— Revenue Equivalence theorem

We can use our theoretical model of logical induction to refine and expand these
fields for better application to artificial agents.
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Visualizing a theoretical application

Currently, game theory analyzes scenarios with logically omniscient agents...

Now we can better theoretically analyze scenarios with bounded reasoners:

(
I objective function
: U 1 : {world histories} -> R

logically uncertain
agent A1 (time 1)

v

logically uncertain

— >

|r world state

| W(time 1)

|r world state
1 W(time 2)

|r world state

objective function I

U2 :{world histories} -> R |
|

logically uncertain
agent Az(time 1)

v

logically uncertain

.

agent A1 (time 2) | W(time 3) agent Az(time 2)
\____l____
[ Payoff, = | [ Payoff = |
— 3l 1" g | worldhistory |y 2 e
U W) W PoU,W)
(S J \ J o J
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What have we learned so far?

The following are more feasible than one might think:

* Inexploitability. An algorithm can satisfy a fairly
arbitrary set of inexploitability conditions using
Brouwer’s FPT.

e Self-trust. Introspection and self-trust need not lead to
mathematical paradoxes.

e QOutpacing deduction. Inductive learning can in
principle outpace deduction, by an uncomputably large
margin on polytime generable questions.
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What have we learned so far?

The following are less “required” than one might
think for a rational gambler to avoid exploitation:

e Calibration. So far it looks like one need only be
calibrated about logical bets that are settled
sufficiently quickly (this is being actively
researched).

 Hard-coded belief coherence. A powerful bet-
balancing procedure can and must learn to
“mimic” deductive rules used to settles its bets.
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Meta updates

MIRI’s general approach includes develop “big”
guestions about how Al can and should work, past
the stages of philosophical conversation and into

the domain of math and CS.

[ Philosophy h /I\/Iathematics/CS\

big questions technical
about Al answers
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Meta updates

| was not personally expecting logical induction to
be “solved” in this way for at least a decade, so I've
updated that:

* the methodology of breaking unsettled
philosophical questions down into math/CS and
grinding through them is more fruitful than |
thought; and

* perhaps other seemingly “out of reach” problems
in Al alignment, like decision theory and logical
counterfactuals, might be amenable to this
approach.
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Thanks!

To

* Scott Garrabrant, for the core idea and many
rapid subsequent insights

* Tsvi Benson Tilsen, Nate Soares, and Jessica
Taylor for coauthoring the paper

* Jimmy Rintjema for a /ot of help with LaTeX
ougs and collaborative editing issues
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<end of this talk>



Logical Induction Andrew Critch critch@intelligence.org

Slides from other talks | could end up wanting to
use in response to questions:
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Some questions

Is it feasible to build a useful superintelligence that,

e.g.,

* Shares our values, and will not take them to
extremes? (“value learning”)

* Will not compete with us for resources?
(“convergent incentives”)

* Will not resist us modifying its goals or shutting it
down? (“corribility”)

* Can understand itself without deriving
contradictions via bounded Lob’s Theorem?
(“self-reflective stability”)
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Examples of technical understanding

* Vickrey second-price auctions (1961) :

— Well-understood optimality results
(truthful bidding is optimal)

— Real-world applications,
(network routing)

— Decades of peer-review
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* Nash equilibria (1951) :

Formal definition [edit]

Let ( S, f ) be a game with 72 players, where S; is the strategy set for player 7,
S =05, x5, x---x 8§, is the set of strategy profiles and

f= (fl(I)- . fn(;r))is the payoff function for € S. Let T; be a
strategy profile of player ; and T _; be a strategy profile of all players except
for player 7. When each playerz € {1,. .., n} chooses strategy ;
resulting in strategy profile r = (;171, o In) then player ; obtains payoff
fi( 1-) Note that the payoff depends on the strategy profile chosen, i.e., on the
strategy chosen by player ; as well as the strategies chosen by all the other
players. A strategy profile * < &' is a Nash equilibrium (NE) if no unilateral

deviation in strategy by any single player is profitable for that player, that is

Vi,x; € S;: filzl, 2" ) = filx;,x";).
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e Classical Game Theory (1953):

5:5 0;0 3:2 0:0

An extensive form game.
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Problem: Counterfactuals
for Self-Reflective Agents

What does it def Environment ():
mean for a
program A to
Improve some
feature of a larger
program E in

def Agent(senseData)
def Utility(globalVariables)

which A is do Agent(senseDatal)
running, and do Agent(senseData2)
which A can

understand? end
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(optional pause for discussion of IndignationBot)
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Example: T maximizing

What would happen if | changed the first digit of
tto 9?7

This seems absurd because 1 is logically
determined.

However, the result of running a computer
program (e.g. the evolution of the Schrodinger
equation) is logically determined by its source
code and inputs...
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... when an agent reasons to do X “because X is
better than Y”, considering what would happen if
it did Y instead means considering a mathematical

impossibility.

(If the agent has access to its own source code, it
can derive a contradiction from the hypothesis “I
do Y”, from which anything follows. This is clearly
not how we want our Al to reason. How do we?
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Current formalisms are “Cartesian” in that they
separate an agent’s source code and cognitive
machinery form its environment.

This is a type error, and in combination with other
subtleties, it has some serious consequences.
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Examples (page 1)
 Robust Cooperation in the Prisoners’ Dilemma

(LaVictoire et al, 2014) demonstrates non-
classical cooperative behavior in agents with
open source codes;

 Memory Issues of Intelligent Agents (Orseau
and Ring, AGI 2012) notes that Cartesian
agents are oblivious to damage to their
cognitive machinery;
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Examples (page 2)

e Space-Time Embedded Intelligence (Orseau
and Ring, AGI 2012) provides a more
naturalized framework for agents inside
environments;

* Problems of self-reference in self-improving
space-time embedded intelligence (Fallenstein
and Soares, AGI 2014) identifies problems
persisting in the Orseau-Ring framework,
including procrastination and issues with self-
trust arising from Lob’s theorem;
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Examples (page 3)

* Vingean Reflection: Reliable Reasoning for
Self-Improving Agents (Fallenstein and Soares,
2015) provides some approaches to resolving
some of these issues;

... lots more; see intelligence.org/research for
additional reading.




