
Reflective Variants of Solomonoff Induction and AIXI

In Artificial General Intelligence: 8th International Conference,
AGI 2015, Berlin, Germany, July 22–25, 2015. Proceedings, 9205:60–69.

Lecture Notes in Artificial Intelligence. Springer International Publishing

Benja Fallenstein and Nate Soares and Jessica Taylor
Machine Intelligence Research Institute
{benja,nate,jessica}@intelligence.org

Abstract

Solomonoff induction and AIXI model their en-
vironment as an arbitrary Turing machine, but
are themselves uncomputable. This fails to cap-
ture an essential property of real-world agents,
which cannot be more powerful than the en-
vironment they are embedded in; for example,
AIXI cannot accurately model game-theoretic
scenarios in which its opponent is another in-
stance of AIXI.

In this paper, we define reflective variants of
Solomonoff induction and AIXI, which are able
to reason about environments containing other,
equally powerful reasoners. To do so, we re-
place Turing machines by probabilistic oracle
machines (stochastic Turing machines with ac-
cess to an oracle). We then use reflective ora-
cles, which answer questions of the form, “is the
probability that oracle machine M outputs 1
greater than p, when run on this same oracle?”
Diagonalization can be avoided by allowing the
oracle to answer randomly if this probability is
equal to p; given this provision, reflective ora-
cles can be shown to exist. We show that reflec-
tive Solomonoff induction and AIXI can them-
selves be implemented as oracle machines with
access to a reflective oracle, making it possible
for them to model environments that contain
reasoners as powerful as themselves.

1 Introduction

Legg and Hutter [1] have defined a “Universal measure
of intelligence” that describes the ability of a system
to maximize rewards across a wide range of diverse en-
vironments. This metric is useful when attempting to
quantify the cross-domain performance of modern AI
systems, but it does not quite capture the induction
and interaction problems faced by generally intelligent
systems acting in the real world: In the formalism of

Research supported by the Machine Intelligence Re-
search Institute (intelligence.org). The final publication
is available at Springer via http://dx.doi.org/10.1007/
978-3-319-21365-1_7.

Legg and Hutter (as in many other agent formalisms)
the agent and the environment are assumed to be dis-
tinct and separate, while real generally intelligent sys-
tems must be able to learn about and manipulate an
environment from within.

As noted by Hutter [2], Vallinder [3], and others,
neither Solomonoff induction [4] nor AIXI [5] can cap-
ture this aspect of reasoning in the real world. Both
formalisms require that the reasoner have more comput-
ing power than any individual environment hypothesis
that the reasoner considers: a Solomonoff inductor pre-
dicting according to a distribution over all computable
hypotheses is not itself computable; an AIXI acting ac-
cording to some distribution over environments uses
more computing power than any one environment in
its distribution. This is also true of computable ap-
proximations of AIXI, such as AIXItl. Thus, these for-
malisms cannot easily be used to make models of rea-
soners that must reason about an environment which
contains the reasoner and/or other, more powerful rea-
soners. Because these reasoners require more comput-
ing power than any environment they hypothesize, en-
vironments which contain the reasoner are not in their
hypothesis space!

In this paper, we extend the Solomonoff induction
formalism and the AIXI formalism into a setting where
the agents reason about the environment while em-
bedded within it. We do this by studying variants of
Solomonoff induction and AIXI using probabilistic or-
acle machines rather than Turing machines, where a
probabilistic oracle machine is a Turing machine that
can flip coins and make calls to an oracle. Specifically,
we make use of probabilistic oracle machines with access
to a “reflective oracle” [6] that answers questions about
other probabilistic oracle machines using the same or-
acle. This allows us to define environments which may
contain agents that in turn reason about the environ-
ment which contains them.

Section 2 defines reflective oracles. Section 3 gives a
definition of Solomonoff induction on probabilistic ora-
cle machines. Section 4 gives a variant of AIXI in this
setting. Section 5 discusses these results, along with a
number of avenues for future research.

1

http://dx.doi.org/10.1007/978-3-319-21365-1_7
http://dx.doi.org/10.1007/978-3-319-21365-1_7

2 Reflective Oracles

Our goal is to define agents which are able to reason
about environments containing other, equally powerful
agents. If agents and environments are simply Turing
machines, and two agents try to predict their environ-
ments (which contain the other agent) by simply run-
ning the corresponding machines, then two agents try-
ing to predict each other will go into an infinite loop.

One might try to solve this problem by defining
agents to be Turing machines with access to an ora-
cle, which takes the source code of an oracle machine
as input and which outputs what this machine would
output when run on the same oracle. (The difference to
simply running the machine would be that the oracle
would always return an answer, never go into an infi-
nite loop.) Then, instead of predicting the environment
by running the corresponding oracle machine, agents
would query the oracle about this machine. However,
it’s easy to see that such an oracle cannot exist, for rea-
sons similar to the halting problem: if it existed, then
by quining, one could write a program that queries the
oracle about its own output, and returns 0 iff the oracle
says it returns 1, and returns 1 otherwise.

It is possible to get around this problem by allowing
the oracle to give random answers in certain, restricted
circumstances. To do so, we define agents and environ-
ments to be probabilistic oracle machines, Turing ma-
chines with the ability to act stochastically (by tossing
fair coins) and to consult oracles. We consider proba-
bilistic oracle machines to be equipped with advance-
only output tapes.

We will write M for the set of these probabilistic
oracle machines. Throughout this paper, an overarrow
will be used to denote finite strings, and ε will be used
to denote the empty string. Let B := { 0, 1 } be the set
of bits, and B<ω denote the set of finite strings of bits.
We write MO(−→x) for a machine M ∈ M run on the
input −→x ∈ B<ω, using the oracle O.

Roughly speaking, a reflective oracle O will answer
queries of the form “is the probability that MO(−→x) out-
puts 1 greater than q?” where q is a rational probability.
That is, a query is a triple (M,−→x , q) ∈M×B<ω×Q∩
[0, 1], where Q∩ [0, 1] is the set of rational probabilities.

More formally, write P(MO(−→x) = y) for the proba-
bility that MO(−→x) outputs at least one bit and that
the first bit of output is y ∈ B. If MO(−→x) does
not always halt before outputting the first bit, then
P(MO(−→x) = 1) + P(MO(−→x) = 0) may be less than 1.
We assume that the oracle always outputs either 1 or
0, and define distinct calls to the oracle to be stochas-
tically independent (even if they call the oracle on the
same query); hence, an oracle’s behavior is fully spec-
ified by the probabilities P(O(M,−→x , q) = 1). Now, we
can define reflective oracles as follows:

Definition An oracle O is “reflective” if, for all M ∈
M and −→x ∈ B<ω, there is some p ∈ [0, 1] such that

P(MO(−→x) = 1) ≤ p ≤ P(MO(−→x) 6= 0)

and such that for all q ∈ Q ∩ [0, 1], the following impli-
cations hold:

q > p =⇒ P(O(M,−→x , q) = 1) = 1 (1)

q < p =⇒ P(O(M,−→x , q) = 0) = 1 (2)

Note that if MO(−→x) is guaranteed to output a bit,
then p must be exactly the probability P(MO(−→x) = 1)
that MO(−→x) returns 1. If MO(−→x) sometimes fails to
halt, then the oracle can, in a sense, be understood
to “redistribute” the probability that the machine goes
into an infinite loop between the two possible outputs:
it answers queries as if MO(−→x) outputs 1 with probabil-
ity p, where p is lower-bounded by the true probability
of outputting 1, and upper-bounded by the probability
of outputting 1 or looping.

If q = p, then P(O(M,−→x , q) = 1) may be any num-
ber between 0 and 1; this is essential in order to avoid
paradox. For example, consider the probabilistic ora-
cle machine which asks the oracle which bit it itself is
most likely to output, and outputs the opposite bit. In
this case, a reflective oracle may answer 1 with proba-
bility 0.5, so that the agent outputs each bit with equal
probability. In fact, given this flexibility, a consistent
solution always exists.

Theorem 2.1. A reflective oracle exists.

Proof. [6, Appendix A].

3 Reflective Solomonoff Induction

Using a reflective oracle, it is possible to define a vari-
ation on Solomonoff induction defined on probabilistic
oracle machines. Define an environment to be a prob-
abilistic oracle machine which takes a sequence of bits
as input and (probabilistically) produces a single bit
of output. We write B<ω B for the type of proba-
bilistic oracle machines run with oracle O which take a
finite bit string as input and probabilistically output a
single bit. Holding O fixed, one can think of an environ-
ment as defining a function of type B<ω → ∆(B) where
∆(B) is the set of probability distributions over a single
bit. Equivalently, one may see an environment paired
with an oracle as a distribution over possibly-infinite bit
strings, where strings of bits are generated by running
the environment on ε to produce the first bit, and then
running it on the first bit to produce the second bit,
and then running it on the first two bits to produce the
third bit, and so on. What results is a distribution over
possibly-infinite bit strings (where the strings may be
finite if the environment sometimes goes into an infinite
loop rather than producing another output bit).

We will give a variant of Solomonoff induction that
predicts observations according to a simplicity distribu-
tion over environments, and which is itself a probabilis-
tic oracle machine (implying that it can be embedded
into an environment). Roughly speaking, it will take a
simplicity distribution, condition it on the observations

2

seen so far, sample a machine from the resulting distri-
bution, and then use the oracle to output its next bit as
if it were that machine. Loosely, this results in a distri-
bution over bits which is 1 according to the probability
that a random machine from the updated distribution
would next output a 1.

In order to define our variant of Solomonoff induc-
tion (and later AIXI) it will be necessary to fix some
representation of real numbers. Throughout this pa-
per, real numbers will be represented by infinite se-
quences of nested closed intervals. To demonstrate,
Algorithm 1 describes a probabilistic oracle machine
getProb : M× B<ω × B R which takes an encod-
ing M of another probabilistic oracle machine, a finite
bit string −→x , and a single bit y, and uses the oracle
O to compute P(MO(−→x) = y). If MO(−→x) may fail

to generate output, getProbO(M,−→x , 1) will return the
“redistributed” probability p from Definition 2.

Algorithm 1: When run with an oracle O, out-
puts P(MO(−→x) = y) as an infinite sequence of
nested intervals.

def getProbO(M,−→x , y):
upper ←− 1;
lower ←− 0;
repeat

middle ←− (upper + lower)/2;
if O(M,−→x ,middle) = y then
lower ←− middle;
else upper ←− middle;
output (lower , upper);

Solomonoff induction on probabilistic oracle machines
is given as a function rSI : B<ω B by Algorithm 2.
This function implicitly defines a probability distribu-
tion over infinite bitstrings, by providing a way to sam-
ple the next bit given the output so far; this allows the
conditional probability of the next bit to be computed
by getProb. (rSI is defined so that it will always output
either 0 or 1, never go into an infinite loop.)

Algorithm 2 makes use of two more helper func-
tions defined in Appendix A, namely getStringProb :
M×B<ω ×B<ω R, which computes the probability
that a machine M would output the sequence −→y condi-
tional on having already outputted −→x , and flip : R B
which flips a weighted coin (returning 1 with probabil-
ity equal to the weight, and 0 otherwise); like getProb,
getStringProb uses the “redistributed” probabilities p
from Definition 2 if a machine may go into an infinite
loop.

With these two helper functions, defining
Solomonoff induction on probabilistic oracle ma-
chines is straightforward. Using rejection sampling,
we sample a machine M with probability propor-
tional to 2−len(M)getStringProbO(M, ε,−→x), where−→x is the string of our observations so far. To do
this, we draw M with probability 2−len(M) using

the randomMachine function, and then keep it with
probability getStringProbO(M, ε,−→x). After sampling
this machine, we use getProb to sample the next bit in
the sequence after our observations.

Algorithm 2: Reflective Solomonoff induction for
probabilistic oracle machines. It takes a finite bit
string and outputs a bit.

def rSIO(−→x):
repeat

M ←− randomMachineO();

if flipO(getStringProbO(M, ε,−→x)) then

return flipO(getProbO(M,−→x , 1))

Because rSI always terminates, it defines a distribution
rSI ∈ ∆(Bω) over infinite bit strings, where PrSI(

−→x) is
the probability that rSI generates the string −→x (when
run on the first n bits to generate the n + 1th bit).
This distribution satisfies the essential property of a
simplicity distribution, namely, that each environment
M is represented somewhere within this distribution.

Theorem 3.1. For each probabilistic oracle ma-
chine M , there is a constant CM such that for all finite
bit strings −→x ∈ B<ω,

PrSI(
−→x) ≥ CM · PM (−→x)

where PM (−→x) is the probability of M generating the
sequence −→x (when run on the first n bits to generate
the n+ 1th bit).

Proof. First note that

PM (−→x) ≤ getStringProbO(M, ε,−→x)

=

len(−→x)∏
i=0

getProbO(M,−→x 1:i−1,
−→x i),

with equality on the left if MO(−→y) is guaranteed to
produce an output bit for every prefix −→y of −→x . Then,
the result follows from the fact that by construction,
sampling a bit string from rSIO is equivalent to choos-
ing a random machine M with probability propor-
tional to 2−len(M) and then sampling bits according to
getProbO(M, ·, ·).

Reflective Solomonoff induction does itself have the
type of an environment, and hence is included in the
simplicity distribution over environments. Indeed, it
is apparent that reflective Solomonoff induction can be
used to predict its own behavior—resulting in behavior
that is heavily dependent upon the choice of reflective
oracle and the encoding of machines as bit strings, of
course. But more importantly, there are also environ-
ments in this distribution which run Solomonoff induc-
tion as a subprocess: that is, this variant of Solomonoff
induction can be used to predict environments that con-
tain Solomonoff inductors.

3

4 Reflective AIXI

With reflective Solomonoff induction in hand, we may
now define a reflective agent, by giving a variant of
AIXI that runs on probabilistic oracle machines. To do
this, we fix a finite set O of observations, together with
a prefix-free encoding of observations as bit strings.
Moreover, we fix a function r : O → [0, 1] which as-
sociates to each o ∈ O a (computable) reward r(o).
Without loss of generality, we assume that the agent
has only two available actions, 0 and 1.

Reflective AIXI will assume that an environment
is a probabilistic oracle machine which takes a finite
string of observation/action pairs and produces a new
observation; that is, an environment is a machine with
type (O × B)<ω O. Reflective AIXI assumes that
it gets to choose each action bit, and, given a history−→oa ∈ (O×B)<ω and the latest observation o ∈ O, it out-
puts the bit which gives it the highest expected (time-
discounted) future reward. We will write rt(

−→oa) :=
r(fst(−→oat)) for the reward in the tth observation of −→oa.

To define reflective AIXI, we first need the function
step from Algorithm 3, which encodes the assumption
that an environment can be factored into a world-part
and an agent-part, one of which produces the observa-
tions and the other which produces the actions.

Algorithm 3: Takes an agent and an environment
and the history so far, and computes the next ob-
servation/action pair.

def stepO(world , agent ,−→oa):

o←− worldO(−→oa);

a←− agentO(−→oa, o);
return (o, a)

Next, we need the function reward from Algorithm 4,
which computes the total discounted reward given a
world (selecting the observations), an agent (assumed
to control the actions), and the history so far. Total re-
ward is computed using an exponential discount factor
0 < γ < 1. We multiply by 1− γ to make total reward
sum to a number between 0 and 1. With this rescaling,
total discounted reward starting from step t is no more
than (1− γ)

∑∞
s=t γ

s−1 = γt−1.

Algorithm 4: The distribution over real numbers
defined by this probabilistic machine is the distri-
bution of the future discounted reward of agent
interacting with world, given that the history −→oa
has already occurred.

def rewardO(world , agent ,−→oa):
for n = 1, 2, . . . do
−→oa←−
append

(−→oa, stepO(world , agent ,−→oa)
)
;

seen ←− (1− γ)
∑n
t=1 γ

t−1 · rt(−→oa);
output (seen, seen + γn);

With reward in hand, an agent which achieves the max-
imum expected (discounted) reward in a given environ-
ment µ, can be defined as in rAIµ. Algorithm 5 defines a

machine actionRewardO(a), which computes the reward
if the agent takes action a in the next timestep and in
future timesteps behaves like the optimal agent rAIµ. It

then defines a machine differenceO(), which computes
the difference in the discounted rewards when taking
action 1 and when taking action 0, then rescales this
difference to the interval [0, 1] and flips a coin with the
resulting probability. Finally, rAIµ uses the oracle to

determine whether the probability that differenceO() =
1 is greater than 1/2, which is equivalent to asking

whether the expectation of actionRewardO(1) is greater

than the expectation of actionRewardO(0); if the expec-
tations are equal, the oracle may behave randomly, but
this is acceptable, since in this case the agent is indif-
ferent between its two actions. Note that Algorithm 5
references its own source code (actionReward passes the
source of rAIµ to reward); this is possible by quining
(Kleene’s second recursion theorem).

Algorithm 5: Reflective AIµ.

def rAIOµ (−→oa, o):
def actionRewardO(a):

return rewardO (µ, rAIµ, append (−→oa, (o, a)))

def differenceO():
return

flipO

(
actionRewardO(1)− actionRewardO(0) + 1

2

)
return O (difference, ε, 1/2);

We can now obtain a reflective version of AIXI by in-
stantiating the environment µ in rAIµ to a universal
environment ξ, which (in analogy with Solomonoff in-
duction) selects a random environment and then be-
haves like this environment. As in our implementa-
tion of Solomonoff induction, we use rejection sam-
pling, sampling a random machine M and keeping it
with probability getHistProbO(M,−→oa, o′), which com-
putes the probability that environment M will produce
an observation starting with prefix o′ given the previ-
ous history −→oa (Algorithm 8). ξ will find the next bit of
the next observation after any −→oa sequence followed by
a prefix o′ of the next observation.

4

Algorithm 6: A variant of reflective Solomonoff
induction used by reflective AIXI. It takes a series
of observation/action pairs and updates its simplic-
ity distribution according to the likelihood that an
environment produced the observations in this se-
quence (holding the actions fixed).

def ξO(−→x):
split −→x into a sequence −→oa of observations and
actions and a prefix o′ of the next observation;
repeat

M ←− randomMachineO();

if flipO(getHistProbO(M,−→oa, o′)) then
return flip(getProb(M,−→oao′, 1));

def rAIXIO(−→oa, o):
return rAIOξ (−→oa, o))

5 Conclusions

Our model of agents interacting with an environment is
quite reminiscent of classical game theory, in which all
agents are assumed to be logically omniscient: indeed,
reflective oracles can be used to provide new founda-
tions for classical game theory in which the agents are
not ontologically distinct from the rest of the game, but
rather are ordinary features of the environment [6].

Realistic models of artificial reasoners must dispense
with this guarantee of logical omniscience, and consider
agents that reason under logical uncertainty. Even rea-
soners that have perfect knowledge about other agents
(for example, reasoners which possess the source code of
a different, deterministic agent) may not be able to de-
duce exactly how that agent will behave, due to compu-
tational limitations. Such limitations are not captured
by models of reflective AIXI.

Nevertheless, we expect that studying the behav-
ior of powerful reasoners in reflective environments will
shed some light on how powerful bounded reasoners can
perform well in more realistic settings. These reflec-
tive environments provide the beginnings of a suite of
tools for studying agents that can reason about the en-
vironment in which they are embedded, and which can
reason about universes which contain other agents of
similar capabilities.

It is our hope that, through studying this simple
model of reflective agents, it will be possible to gain in-
sights into methods that agents can use to learn the en-
vironment which embeds them (as discussed by Soares
[7]), while reasoning well in the presence of agents which
are as powerful or more powerful than the reasoner
(as discussed by Fallenstein and Soares [8]). For ex-
ample, these reflective versions of Solomonoff induction
and AIXI open up the possibility of studying agents in
settings where the agent/environment boundary breaks
down (as discussed by Orseau and Ring [9]), or agents in
settings containing other similarly powerful agents. A

first step in this direction is suggested by a result of [6],
which shows that it is possible to define a computable
version of reflective oracles, defined only on the set of
probabilistic oracles machines whose length is ≤ l and
which are guaranteed to halt within a time bound t; this
appears to be exactly what is needed to translate our
reflective variant of AIXI into a reflective, computable
variant of AIXItl.

References

[1] Shane Legg and Marcus Hutter. “Universal Intelli-
gence. A Definition of Machine Intelligence”. In: Minds
and Machines 17.4 (2007), pp. 391–444. doi: 10.1007/
s11023-007-9079-x.

[2] Marcus Hutter. “Open Problems in Universal Induc-
tion & Intelligence”. In: Algorithms 2.3 (2009), pp. 879–
906. doi: 10.3390/a2030879.

[3] Aron Vallinder. “Solomonoff Induction: A Solution to
the Problem of the Priors?” MA thesis. Lund Uni-
versity, 2012. url: http://lup.lub.lu.se/luur/
download?func=downloadFile&recordOId=3577211&
fileOId=3577215.

[4] Ray J. Solomonoff. “A Formal Theory of Inductive
Inference. Part I”. In: Information and Control 7.1
(1964), pp. 1–22. doi: 10 . 1016 / S0019 - 9958(64)
90223-2.

[5] Marcus Hutter. “Universal Algorithmic Intelligence.
A Mathematical Top→Down Approach”. In: Artificial
General Intelligence. Ed. by Ben Goertzel and Cassio
Pennachin. Cognitive Technologies. Berlin: Springer,
2007, pp. 227–290. doi: 10.1007/978-3-540-68677-
4_8.

[6] Benja Fallenstein, Jessica Taylor, and Paul Christiano.
Reflective Oracles: A Foundation for Classical Game
Theory. Tech. rep. 2015–7. Berkeley, CA: Machine In-
telligence Research Institute, 2015. url: http : / /
intelligence.org/files/ReflectiveOracles.pdf.

[7] Nate Soares. Formalizing Two Problems of Real-
istic World-Models. Tech. rep. 2015–3. Berkeley,
CA: Machine Intelligence Research Institute, 2015.
url: https : / / intelligence . org / files /
RealisticWorldModels.pdf.

[8] Benja Fallenstein and Nate Soares. Vingean Reflection.
Reliable Reasoning for Self-Improving Agents. Tech.
rep. 2015–2. Berkeley, CA: Machine Intelligence Re-
search Institute, 2015. url: https://intelligence.
org/files/VingeanReflection.pdf.

[9] Laurent Orseau and Mark Ring. “Space-Time Embed-
ded Intelligence”. In: Artificial General Intelligence.
5th International Conference, AGI 2012, Oxford, UK,
December 8–11, 2012. Proceedings. Ed. by Joscha Bach,
Ben Goertzel, and Matthew Iklé. Lecture Notes in Ar-
tificial Intelligence 7716. New York: Springer, 2012,
pp. 209–218. doi: 10.1007/978-3-642-35506-6_22.

5

http://dx.doi.org/10.1007/s11023-007-9079-x
http://dx.doi.org/10.1007/s11023-007-9079-x
http://dx.doi.org/10.3390/a2030879
http://lup.lub.lu.se/luur/download?func=downloadFile&recordOId=3577211&fileOId=3577215
http://lup.lub.lu.se/luur/download?func=downloadFile&recordOId=3577211&fileOId=3577215
http://lup.lub.lu.se/luur/download?func=downloadFile&recordOId=3577211&fileOId=3577215
http://dx.doi.org/10.1016/S0019-9958(64)90223-2
http://dx.doi.org/10.1016/S0019-9958(64)90223-2
http://dx.doi.org/10.1007/978-3-540-68677-4_8
http://dx.doi.org/10.1007/978-3-540-68677-4_8
http://intelligence.org/files/ReflectiveOracles.pdf
http://intelligence.org/files/ReflectiveOracles.pdf
https://intelligence.org/files/RealisticWorldModels.pdf
https://intelligence.org/files/RealisticWorldModels.pdf
https://intelligence.org/files/VingeanReflection.pdf
https://intelligence.org/files/VingeanReflection.pdf
http://dx.doi.org/10.1007/978-3-642-35506-6_22

APPENDIX

A Helper functions

Algorithm 7: Computes the probability that ma-
chine M outputs −→y conditional on it already out-
putting −→x , as a real number represented by an in-
finite sequence of nested intervals..

def getStringProbO(M,−→x ,−→y):

return
∏len(−→y)
i=1 getProbO(M,−→x−→y 1:i−1,

−→y i)

Algorithm 8: Computes the probability that M
would output the observations in −→oa and the ad-
ditional observation prefix o′, given that the agent
responds with the actions in −→oa.

def getHistProbO(M,−→oa, o′):
return(∏len(−→oa)

i=1 getStringProbO(M,−→oa1:i−1, fst(−→oai))
)
·

getStringProbO(M,−→oa, o′));

Algorithm 9: Generates a random machine M
with probability 2−len(M).

def randomMachineO():
prefix ←− ε;
repeat

if prefix is a valid machine then return
prefix ;
else prefix ←− append(prefix , tossCoin());

Algorithm 10: Outputs 1 with probability weight ,
0 otherwise.

def flipO(weight):
upper ←− 1;
lower ←− 0;
for (l, u) in weight do

middle ←− (upper + lower)/2;
if tossCoin() = 1 then upper ←− middle;
else lower ←− middle;
if upper < l then return 1;
else if lower > u then return 0;

6

	1 Introduction
	2 Reflective Oracles
	3 Reflective Solomonoff Induction
	4 Reflective AIXI
	5 Conclusions
	A Helper functions

