
Asymptotic Logical Uncertainty and The Benford Test

Scott Garrabrant1,2, Siddharth Bhaskar1, Abram Demski2,3,
Joanna Garrabrant, George Koleszarik, and Evan Lloyd1

1University of California, Los Angeles
2Machine Intelligence Research Institute

3University of Southern California

Abstract

We give an algorithm AL,T which assigns prob-
abilities to logical sentences. For any simple in-
finite sequence {φsn} of sentences whose truth-
values appear indistinguishable from a biased
coin that outputs “true” with probability p, we
have limn→∞AL,T (sn) = p.

1 Introduction

Let φ1, φ2, . . . be a simple enumeration of all sentences
in first order logic over ZFC. The goal of logical uncer-
tainty is to construct an algorithm M which on input
N outputs a probability M(N), which represents the
probability that φN is true [1, 2, 3, 4].1 This notion of
probability does not refer to random variables. It refers
to the degree of uncertainty that one might have about
logical sentences whose truth-values have not been cal-
culated.

Much work has been done on a related problem
where M on input N outputs an infinite sequence of
numbers and M(N) is defined to be the limit of the
sequence output by M on input N [1, 2, 11]. In this
case, M(N) is not computable, and can easily be 1 for
all provable φ and 0 for all disprovable φ, so all of the
work is in figuring out how M should behave when φ is
independent of ZFC.

In this paper, we take a different approach, which
we call asymptotic logical uncertainty. We require that
M(N) be computable and have runtime bounded by
some function of N .

We propose as a baseline that any method of quickly
assigning probabilities should be able to pass a test we
call the Benford test. Consider the infinite sequence
of sentences {φsn} given by φsn = “The first digit of

Research supported by the Machine Intelligence Research
Institute (intelligence.org). Technical Report 2015–11.

1The problem has also been studied in the case where
we don’t require computability even in the limit [5, 6, 7].
The problem was first studied in the context of measures on
Boolean algebras [8, 9, 10].

3 ↑n 3 is a 1.” We say that M passes the Benford test
if

lim
n→∞

M(sn) = log10(2) ≈ .30103,

as prescribed by Benford’s law. More generally, we say
that M passes the generalized Benford test if it con-
verges to the correct probability on any similar infinite
sequences whose truth values appear indistinguishable
from independent flips of a biased coin. We then give
an algorithm AL,T which passes the generalized Ben-
ford test.

Logical uncertainty is one aspect of the problem of
combining probability and logic, of which statistical re-
lational learning is another [12]. Statistical relational
learning addresses the problem of representing proba-
bilistic models with logical structure, including regu-
larities such as repeated entities and other complexi-
ties such as uncertainty about the number of entities.
In contrast, logical uncertainty deals with uncertainty
about logic. As Paul Christiano put it: “any realistic
agent is necessarily uncertain not only about its envi-
ronment or about the future, but also about the logi-
cally necessary consequences of its beliefs.” [1]

2 The Benford Test

Benford’s law states that in naturally occurring num-
bers, the leading digit d ∈ {1, . . . , 9} of that number
in base 10 occurs with probability log10(1 + 1

d). Many
mathematical sequences have been shown to have fre-
quencies of first digits that satisfy Benford’s law [13]. In
particular, the frequencies of the first digits of powers
of 3 provably satisfy Benford’s law.

The function 3 ↑n k is defined by 3 ↑1 k = 3k, 3 ↑n
1 = 3, and 3 ↑n k = 3 ↑n−1 (3 ↑n (k − 1)). Throughout
the paper, let T (N) be an increasing time complexity
function in the range of N ≤ T (N) ≤ 3 ↑k N for some
fixed k, and let R(N) = T (N)N4 log T (N).

Consider the sequence 3 ↑n 3. Clearly this sequence
only contains powers of 3. We might hypothesize that
the frequencies of the first digits in this sequence also
satisfy Benford’s law. However, 3 ↑n 3 is very large,
and first digit of 3 ↑n 3 is probably very difficult to

1

compute. It is unlikely that the first digit of 3 ↑3 3 will
ever be known.

If asked to quickly assign a probability to the sen-
tence φsn = “The first digit of 3 ↑n 3 is a 1,” for
some n > 2, the only reasonable answer would be
log10(2) ≈ .30103. Note that φsn is either true or false;
there are no random variables. The probability here
represents a reasonable guess in the absence of enough
time or resources to compute 3 ↑n 3.

Definition 2.1. Let M be a Turing machine which on
input N runs in time O(R(N)) and outputs a probability
M(N), which represents the probability assigned to φN .
We say that M passes the Benford test if

lim
n→∞

M(sn) = log10(2),

where φsn = “The first digit of 3 ↑n 3 is a 1.”

It is easy to pass the Benford test by hard-coding
in the probability. It is more difficult to pass the Ben-
ford test in a natural way. That the best probability
to assign to φsn is log10(2) depends not only on the
fact that the frequency with which φsn is true tends
toward log10(2), but also on the fact that the sequence
of truth-values of φsn contains no patterns that can
be used to quickly compute a better probability on
some subsequence. We therefore assume that this se-
quence of truth-values is indistinguishable from a se-
quence produced by a coin that outputs “true” with
probability log10(2). Formally, we are assuming that
S = {sn|n ∈ N} is an irreducible pattern with probabil-
ity log10(2), as defined in the next section.

3 Irreducible Patterns

Fix a universal Turing machine U and an encoding
scheme for machines, and let U(M,x) denote running
the machine U to simulate M with input x.

Definition 3.1. 2 Let S ⊆ N be an infinite subset of
natural numbers such that φN is provable or disprovable
for all N ∈ S, and there exists a Turing machine Z such
that U(Z,N) runs in time T (N) and accepts N if and
only if N ∈ S.

We say that S is an irreducible pattern with prob-
ability p if there exists a constant c such that for every
positive integer m ≥ 3 and every Turing machine W
expressible in k(W) bits, if

S′ = {N ∈ S | U(W,N) accepts in time T (N)}
2We tailored this definition of irreducible pattern to our

needs. The theory of algorithmic randomness may offer al-
ternatives. However, algorithmic randomness generally con-
siders all computable tests and focuses on the case where
p = 1

2
[14, 15, 16]. We believe that any reasonable definition

inspired by algorithmic randomness would imply Definition
3.1.

has at least m elements and r(m,W) is the probabil-
ity that φN is provable when N is chosen uniformly at
random from the first m elements of S′, we have

|r(m,W)− p|< ck(W)
√

log logm√
m

.

The intuition behind the formula is that the observed
frequency r(m,W) for any sequence S′ we select should
not stray far from p. The right hand side of the inequal-
ity needs to shrink slowly enough that a true random
process would stay within it with probability 1 (given
choice of c sufficiently large to accommodate initial vari-
ation). The law of the iterated logarithm gives such a
formula, which is also tight in the sense that we cannot
replace it with a formula which diminishes more quickly
as a function of m.

Proposition 3.2. If we replace provability in Defi-
nition 3.1 with a random process, such that for each
N ∈ S the sentence φN is independently called “prov-
able” with probability p, then S would almost surely be
an irreducible pattern with probability p.

Proof. Fix a Turing machine W . By the law of the
iterated logarithm, there exists a constant c1 such that

lim sup
m→∞

|mr(m,W)−mp|√
m log logm

= c1

almost surely. Therefore

sup
m

|mr(m,W)−mp|√
m log logm

<∞

almost surely. We will use Φ(W) as a shorthand for
this supremum. For any ε > 0, there therefore exists a
c2 such that P(Φ(W) > c2) ≤ ε.

We now show that P(Φ(W) > 2c2 + 1) ≤ ε2. By
the chain rule for probabilities, it suffices to show that
P((Φ(W) > 2c2 + 1)|(Φ(W) > c2)) ≤ ε. Assume
Φ(W) > c2, and Let m1 be the first m such that

|mr(m,W)−mp|√
m log logm

> c2.

It suffices to show that the probability that there exists
an m2 with

|m2r(m2,W)−m2p|√
m2 log logm2

− |m1r(m1,W)−m1p|√
m1 log logm1

> c2

is at most ε.
Observe that

|m2r(m2,W)−m2p|√
m2 log logm2

− |m1r(m1,W)−m1p|√
m1 log logm1

≤ |m2r(m2,W)−m1r(m1,W)− (m2 −m1)p|√
(m2 −m1) log log(m2 −m1)

,

2

and that the probability there exists an m2 with

|m2r(m2,W)−m1r(m1,W)− (m2 −m1)p|√
(m2 −m1) log log(m2 −m1)

> c2

is the same as the probability that Φ(W) > c2, which
is at most ε.

We have thus shown that for every ε, there exists
a constant c3 = c2 + 1 such that the probability that

Φ(W) ≥ 2`c3 is at most ε2
`

.
Partition the set of all Turing machines into sets

W1,W2, . . . , such thatW` contains all Turing machines
expressed in at least 2` but fewer than 2`+1 bits. The
probability that a Turing machine W in W` violates

|r(m,W)− p|< c3k(W)
√

log logm√
m

, (?)

for any m ≥ 3 is at most ε2
`

. The number of Turing

machines inW` is at most 22
`+1

, so the probability that
there is any W ∈ W` and m ≥ 3 which violate (?) is at

most ε2
`

22
`+1

. Therefore, the probability that there is
any Turing machine W and m ≥ 3 which violate (?) is
at most ∑

`∈N
ε2
`

22
`+1

=
∑
`∈N

(4ε)2
`

.

For small enough ε this goes to 0, so for large enough
c3, the probability that (?) holds for all W and m goes
to 1. Therefore, with probability 1, there exists a c such
that

|r(m,W)− p|< ck(W)
√

log logm√
m

,

for all m and W .

We now use the concept of irreducible patterns to
generalize the Benford test.

Definition 3.3. Let M be a Turing machine which on
input N runs in time O(R(N)) and outputs a probability
M(N), which represents the probability assigned to φN .
We say that M passes the generalized Benford test if

lim
N→∞
N∈S

M(N) = p,

whenever S is an irreducible pattern with probability p.

Note that if we conjecture that the S from Definition
2.1 is an irreducible pattern with probability log10(2),
then any M which passes the generalized Benford test
also passes the Benford test.

4 A Learning Algorithm

We now introduce an algorithm AL,T that passes the
generalized Benford test (see Algorithm 1).

Let L be the Turing machine which accepts on in-
put N if ZFC proves φN , rejects on input N if ZFC

Algorithm 1 AL,T (N)

1: P = 0
2: M = N
3: for j = 0, . . . , N do
4: MY = 0
5: for Y a Turing machine expressible in KY <

logN bits do
6: MX = N
7: for X a Turing machine expressible in KX <

logN bits do
8: if U(X,N) and U(Y,N) both accept in

time T (N) then
9: A = 0

10: R = 0
11: i = 1
12: while i ≤ N do
13: if U(X, i) and U(Y, i) both accept

in time T (i) then
14: if U(L, i) accepts in time

T (N) then
15: A = A+ 1
16: else if U(L, i) rejects in time

T (N) then
17: R = R+ 1
18: else
19: i = N
20: i = i+ 1
21: F = A/(A+R)
22: Q = A+R

23: if max
(
KX ,

|F− j
N |
√
Q

KY
√
log logQ

)
< MX

then

24: MX = max
(
KX ,

|F− j
N |
√
Q

KY
√
log logQ

)
25: if MX > MY then
26: MY = MX

27: if MY < M then
28: M = MY

29: P = j/N

30: return P

3

disproves φN , and otherwise does not halt. For conve-
nience, in Algorithm 1, we define log q = 1 for q < 2.

Let TM(N) be the set of all Turing machines X
expressible in at most logN bits such that U(X,N)
accepts in time at most T (N). The encoding of Turing
machines must be prefix-free, which in particular means
that no Turing machine is encoded in 0 bits. Let JN
denote the set of rational numbers of the form j

N with
j = 0, . . . , N .

For X and Y Turing machines, let K(X) be the
number of bits necessary to encode X. Let S′(X,Y)
be the subset of natural numbers i which are accepted
by both U(X, i) and U(Y, i) in time at most T (i). Let
QN (X,Y) be the greatest number less than or equal to
N such that for every s in the first QN (X,Y) elements
of S′, U(L, s) halts in time T (N). Let FN (X,Y) be the
proportion of the first QN (X,Y) elements of S′ which
L accepts. Let

BN (X,Y, P)

= max

(
K(X),

|FN (X,Y)− P |
√
QN (X,Y)

K(Y)
√

log logQN (X,Y)

)
.

Lemma 4.1. The output of AL,T on input N is in

arg min
P∈JN

max
Y ∈TM(N)

min
X∈TM(N)

BN (X,Y, P).

Proof. The algorithm has three for loops, the outer
ranging over j = 0, . . . N and the inner two ranging
over Y and X respectively, both restricted to Turing
machines expressible in logN bits. The condition on
line 8 means that X and Y effectively range over all
Turing machines in TM(N), and P = j

N ranges over
JN .

The inner while loop will increment the variables
A or R a total of exactly QN (X,Y) times. Thus, Q
is set to QN (X,Y) in line 22. Similarly, F is sent to
FN (X,Y) in line 21. Clearly KX and KY are K(X)
and K(Y) respectively. Therefore, the expression on
lines 23 and 24 is BN (X,Y, P).

Considering the for loops from inner to outer, we
minimize this quantity in X, maximize it in Y , and
find P of the form j/N minimizing the whole quantity.
The P returned is therefore a minimizer of

max
Y ∈TM(N)

min
X∈TM(N)

BN (X,Y, P).

The code is not optimized for computational efficiency.
The following proposition is just to ensure that the run-
time is not far off from T (N).

Proposition 4.2. The runtime of AL,T (N) is in
O(R(N)) = O(T (N)N4 log T (N))).

Proof. Simulating U on any input for T time steps can
be done in time cT log T for some fixed constant c [17].
The bulk of the runtime comes from simulating Turing
machines on lines 8, 13, 14, and 16. Each of these lines
takes at most cT (N) log T (N) time, and we enter each
of these lines at most N4 times. Therefore, the program
runs in time O(T (N)N4 log T (N)).

5 Passing the Generalized Benford Test

We are now ready to show that AL,T passes the gen-
eralized Benford test. The proof will use the following
two lemmas.

Lemma 5.1. Let S be an irreducible pattern with prob-
ability p, and let Z be a Turing machine such that
U(Z,N) accepts in time T (N) if and only if N ∈ S.

There exists a constant C such that if N ∈ S, then
there exists a P ∈ JN such that

max
Y ∈TM(N)

BN (Z, Y, P) < C.

Proof. Let P = bpNc
N . From the definition of irreducible

pattern, we have that there exists c such that for all Y ,

|FN (Z, Y)− p|<
cK(Y)

√
log logQN (Z, Y)√
QN (Z, Y)

.

Clearly,

|P − p|≤ 1

N
≤ 1

QN (Z, Y)
≤ 1√

QN (Z, Y)

≤
K(Z)K(Y)

√
log logQN (Z, Y)√

QN (Z, Y)
.

Setting C = K(Z) + c, we get

|FN (Z, Y)− P | ≤ |FN (Z, Y)− p|+|P − p|

<
CK(Y)

√
log logQN (Z, Y)√
QN (Z, Y)

,

so
|FN (Z, Y)− P |

√
QN (Z, Y)

K(Y)
√

log logQN (Z, Y)
< C.

Clearly, K(Z) < C, so BN (Z, Y, P) > C for all Y .
Therefore,

max
Y ∈TM(N)

BN (Z, Y, P) < C.

Lemma 5.2. Let S be an irreducible pattern with prob-
ability p, and let Z be a Turing machine such that
U(Z,N) accepts in time T (N) if and only if N ∈ S.

For all C, for all ε > 0, for all N sufficiently large,
for all P ∈ JN , if N ∈ S, and

min
X∈TM(N)

BN (X,Z, P) < C,

then |P − p|< ε.

4

Proof. Fix a C and a ε > 0. It suffices to show that for
all N sufficiently large, if N ∈ S and |P − p|≥ ε, then
for all X ∈ TM(N), we have BN (X,Z, P) ≥ C.

Observe that since BN (X,Z, P) ≥ K(X), this claim
trivially holds when K(X) ≥ C. Therefore we only
have to check the claim for the finitely many Turing
machines expressible in fewer than C bits.

Fix an arbitrary X. Since S is an irreducible pat-
tern, there exists a c such that

|FN (X,Z)− p|<
cK(Z)

√
log logQN (X,Z)√
QN (X,Z)

.

We may assume that S′(X,Z) is infinite, since other-
wise if we take N ∈ S large enough, X /∈ TM(N).
Thus, by taking N sufficiently large, we can get
QN (X,Z) sufficiently large, and in particular satisfy√

QN (X,Z)

K(Z)
√

log logQN (X,Z)
ε ≥ C + c.

Take N ∈ S large enough that this holds for each X ∈
TM(N) with K(X) < C, and assume |P − p|≥ ε. By
the triangle inequality, we have

|FN (X,Z)− P |≥ |P − p|−|FN (X,Z)− p|

≥ ε−
cK(Z)

√
log logQN (X,Z)√
QN (X,Z)

.

Therefore

BN (X,Z, P)

≥

(
ε− cK(Z)

√
log logQN (X,Z)√
QN (X,Z)

)√
QN (X,Z)

K(Z)
√

log logQN (X,Z)

=

√
QN (X,Z)

K(Z)
√

log logQN (X,Z)
ε− c ≥ C,

which proves the claim.

Theorem 5.3. AL,T passes the generalized Benford
test.

Proof. Let S be an irreducible pattern with probability
p. We must show that

lim
N→∞
N∈S

AL,T (N) = p.

Let Z be a Turing machine such that U(Z,N) accepts
in time T (N) if and only if N ∈ S.

By considering the case when X = Z, Lemma 5.1
implies that there exists a constant C such that for all
N sufficiently large, there exists a P ∈ JN such that

max
Y ∈TM(N)

min
X∈TM(N)

BN (X,Y, P) < C.

Similarly, using this value of C, and considering the case
where Y = Z, Lemma 5.2 implies that for all ε > 0, for
all N sufficiently large, for all P ∈ JN if N ∈ S, and

max
Y ∈TM(N)

min
X∈TM(N)

BN (X,Y, P) < C,

then |P − p|≤ ε.
Combining these, we get that for all ε > 0, for all

N sufficiently large, if N ∈ S and if P is in

arg min
P∈JN

max
Y ∈TM(N)

min
X∈TM(N)

BN (X,Y, P),

then |P − p|≤ ε.
Thus, by Lemma 4.1, we get that for all ε > 0, for all

N sufficiently large, if N ∈ S, then |AL,T (N) − p|≤ ε,
so

lim
N→∞
N∈S

AL,T (N) = p.

6 Final Remarks

Definition 6.1. Given a sentence ψ, consider the in-
finite sequence of integers {sψn} given by φsψ0

= ψ and

φsψn+1
= ¬¬φsψn . If a machine M satisfies

lim
n→∞

M(sψn) = p,

we say that M converges to p on ψ.

Corollary 6.2. If ψ is provable, then AL,T converges
to 1 on ψ. If ψ is disprovable, then AL,T converges to
0 on ψ.

Proof. If ψ is provable, then {sψn} is an irreducible pat-
tern with probably 1. If ψ is disprovable, then {sψn} is
an irreducible pattern with probably 0.

If ψ is neither provable nor disprovable, then it is
not clear whether or not AL,T even converges on ψ.

Question 6.3. Does there exist a machine M such that
M passes the generalized Benford test, and for each sen-
tence ψ, there exists a P (ψ) such that M converges to
P (ψ) on ψ?

Definition 6.4. A function P from logical sentences to
[0, 1] is called coherent if it satisfies the following three
properties:

1. P (φ) = 1 for all provable φ,

2. P (φ) = 0 for all disprovable φ, and

3. P (φ) = P (φ ∧ ψ) + P (φ ∧ ¬ψ) for all φ and ψ.

Coherent functions correspond to probability distribu-
tions on the space of complete extensions of a given
theory.

Question 6.5. Does there exist a machine M and a
coherent function P such that M passes the generalized
Benford test, and for each sentence ψ, M converges to
P (ψ) on ψ?

5

References

[1] Paul Christiano. Non-Omniscience, Probabilistic In-
ference, and Metamathematics. Tech. rep. 2014–3.
Berkeley, CA: Machine Intelligence Research Insti-
tute, 2014. url: http://intelligence.org/files/
Non-Omniscience.pdf.

[2] Abram Demski. “Logical Prior Probability”. In: Arti-
ficial General Intelligence. 5th International Confer-
ence, AGI 2012, Oxford, UK, December 8–11, 2012.
Proceedings. Lecture Notes in Artificial Intelligence
7716. New York: Springer, 2012, pp. 50–59. doi: 10.
1007/978-3-642-35506-6_6.

[3] Haim Gaifman. “Reasoning with Limited Resources
and Assigning Probabilities to Arithmetical State-
ments”. In: Synthese 140.1–2 (2004), pp. 97–119. doi:
10.1023/B:SYNT.0000029944.99888.a7.

[4] Nate Soares and Benja Fallenstein. “Aligning Super-
intelligence with Human Interests. A Technical Re-
search Agenda”. In: The Technological Singularity:
Managing the Journey. Ed. by Jim Miller et al. Vol. 2.
Springer, forthcoming.

[5] Haim Gaifman. “Concerning Measures in First Order
Calculi”. In: Israel Journal of Mathematics 2.1 (1964),
pp. 1–18. doi: 10.1007/BF02759729.

[6] Marcus Hutter et al. “Probabilities on Sentences in an
Expressive Logic”. In: Journal of Applied Logic 11.4
(2013), pp. 386–420. issn: 1570-8683. doi: http://
dx.doi.org/10.1016/j.jal.2013.03.003. url:
http://www.sciencedirect.com/science/article/
pii/S157086831300013X.

[7] Dana Scott and Peter Krauss. “Assigning probabili-
ties to logical formulas”. In: Studies in Logic and the
Foundations of Mathematics 43 (1966), pp. 219–264.

[8] Alfred Horn and Alfred Tarski. “Measures in Boolean
algebras”. In: Transactions of the American Mathe-
matical Society 64.3 (1948), pp. 467–467. issn: 0002-
9947. doi: 10.1090/S0002-9947-1948-0028922-8.
url: http://www.ams.org/journals/tran/1948-
064-03/S0002-9947-1948-0028922-8/S0002-9947-
1948-0028922-8.pdf.

[9] J. L. Kelley. “Measures on Boolean algebras”. In: Pa-
cific Journal of Mathematics 9.4 (1959), pp. 1165–
1177. issn: 0002-9939. doi: 10.1090/S0002- 9939-
1991-1050019-X.

[10] Dorothy Maharam. “An algebraic characterization of
measure algebras”. In: Annals of Mathematics 48.1
(1947), pp. 154–167. issn: 01960644. doi: 10.1016/j.
annemergmed.2010.11.022.

[11] Nate Soares and Benja Fallenstein. Questions of Rea-
soning Under Logical Uncertainty. Tech. rep. 2015–
1. Berkeley, CA: Machine Intelligence Research Insti-
tute, 2015. url: https://intelligence.org/files/
QuestionsLogicalUncertainty.pdf.

[12] Lise Getoor. Introduction to statistical relational
learning. MIT press, 2007.

[13] L. Pietronero et al. “Explaining the uneven distribu-
tion of numbers in nature: the laws of Benford and
Zipf”. In: Physica A: Statistical Mechanics and its Ap-
plications 293.1-2 (2001), pp. 297–304. issn: 03784371.
doi: 10 . 1016 / S0378 - 4371(00) 00633 - 6. arXiv:
9808305 [cond-mat].

[14] Ker-I Ko. “On the notion of infinite pseudorandom se-
quences”. In: Theoretical Computer Science 48 (1986),
pp. 9–33. issn: 03043975. doi: 10 . 1016 / 0304 -
3975(86)90081-2.

[15] Per Martin-Löf. “The definition of random se-
quences”. In: Information and Control 9.6 (1966),
pp. 602–619. issn: 00199958. doi: 10.1016/S0019-
9958(66)80018-9.

[16] Rodney G. Downey and Denis R. Hirschfeldt. Algo-
rithmic randomness and complexity. Springer Science
& Business Media, 2010. isbn: 9780387955674. doi:
10.4249/scholarpedia.2574.

[17] F. C. Hennie and R. E. Stearns. “Two-tape simula-
tion of multitape Turing machines”. In: Journal of the
ACM 13.4 (1966), pp. 533–546. issn: 00045411. doi:
10.1145/321356.321362.

6

http://intelligence.org/files/Non-Omniscience.pdf
http://intelligence.org/files/Non-Omniscience.pdf
http://dx.doi.org/10.1007/978-3-642-35506-6_6
http://dx.doi.org/10.1007/978-3-642-35506-6_6
http://dx.doi.org/10.1023/B:SYNT.0000029944.99888.a7
http://dx.doi.org/10.1007/BF02759729
http://dx.doi.org/http://dx.doi.org/10.1016/j.jal.2013.03.003
http://dx.doi.org/http://dx.doi.org/10.1016/j.jal.2013.03.003
http://www.sciencedirect.com/science/article/pii/S157086831300013X
http://www.sciencedirect.com/science/article/pii/S157086831300013X
http://dx.doi.org/10.1090/S0002-9947-1948-0028922-8
http://www.ams.org/journals/tran/1948-064-03/S0002-9947-1948-0028922-8/S0002-9947-1948-0028922-8.pdf
http://www.ams.org/journals/tran/1948-064-03/S0002-9947-1948-0028922-8/S0002-9947-1948-0028922-8.pdf
http://www.ams.org/journals/tran/1948-064-03/S0002-9947-1948-0028922-8/S0002-9947-1948-0028922-8.pdf
http://dx.doi.org/10.1090/S0002-9939-1991-1050019-X
http://dx.doi.org/10.1090/S0002-9939-1991-1050019-X
http://dx.doi.org/10.1016/j.annemergmed.2010.11.022
http://dx.doi.org/10.1016/j.annemergmed.2010.11.022
https://intelligence.org/files/QuestionsLogicalUncertainty.pdf
https://intelligence.org/files/QuestionsLogicalUncertainty.pdf
http://dx.doi.org/10.1016/S0378-4371(00)00633-6
http://arxiv.org/abs/9808305
http://dx.doi.org/10.1016/0304-3975(86)90081-2
http://dx.doi.org/10.1016/0304-3975(86)90081-2
http://dx.doi.org/10.1016/S0019-9958(66)80018-9
http://dx.doi.org/10.1016/S0019-9958(66)80018-9
http://dx.doi.org/10.4249/scholarpedia.2574
http://dx.doi.org/10.1145/321356.321362

	1 Introduction
	2 The Benford Test
	3 Irreducible Patterns
	4 A Learning Algorithm
	5 Passing the Generalized Benford Test
	6 Final Remarks

