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Abstract

We describe a logical induction criterion for algorithms that reason probabilis-
tically about logical facts, such as claims about mathematical conjectures and
long-running computer programs. We show that algorithms which meet this
criterion (logical inductors) satisfy a number of desirable properties, including
(1) they develop accurate beliefs in a manner that outpaces deduction, by
learning to assign high probabilities to provable conjectures and low probabili-
ties to disprovable ones, long before the proofs can be found; (2) they learn
to use appropriate statistical summaries to predict sequences of statements
whose truth values appear pseudorandom; (3) their beliefs are coherent in the
limit; (4) their beliefs strictly dominate the universal semimeasure in the limit;
and (5) they learn to have accurate beliefs about their own current beliefs, in
a manner that avoids the standard paradoxes of self-reference.
Roughly speaking, the logical induction criterion says that when a reasoner’s
beliefs are interpreted as prices in a stock market, it should not be possible to
exploit that market via any strategy that can be expressed by a polynomial-
time machine. This criterion bears strong resemblance to the “no Dutch
book” criteria that support both expected utility theory (von Neumann and
Morgenstern 1944) and Bayesian probability theory (Ramsey 1931; de Finetti
1937), and we think it captures a portion of what it means to do good reasoning
under logical uncertainty.
This is an abridged version of a longer paper. In the extended paper, we give
a computable logical induction algorithm that satisfies our criterion, and give
proofs of the theorems stated here (along with many others).

1 Introduction

Every student of mathematics has experienced uncertainty about conjectures for
which there is “quite a bit of evidence”, such as the Riemann hypothesis or the twin
prime conjecture. Indeed, when Zhang (2014) proved a bound on the gap between
primes, we were tempted to increase our credence in the twin prime conjecture. But
how much evidence does this bound provide for the twin prime conjecture? Can we
quantify the degree to which it should increase our confidence?

The natural impulse is to appeal to probability theory in general and Bayes’
theorem in particular. Bayes’ theorem gives rules for how to use observations to
update empirical uncertainty about unknown events in the physical world. However,
probability theory lacks the tools to manage uncertainty about logical facts.

Consider encountering a computer connected to an input wire and an output
wire. If we know what algorithm the computer implements, then there are two
distinct ways to be uncertain about the output. We could be uncertain about the
input—maybe it’s determined by a coin toss we didn’t see. Alternatively, we could
This is an abridged version of a longer paper (Garrabrant et al. 2016), which is available at
https://intelligence.org/files/LogicalInduction.pdf. Published as Technical report 2016-2.
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but be uncertain because we haven’t had the time to reason out what the program
does—perhaps it computes the parity of the 87,653rd digit in the decimal expansion
of π, and we don’t personally know whether it’s even or odd.

The first type of uncertainty is about empirical facts. No amount of thinking in
isolation will tell us whether the coin came up heads. To resolve empirical uncertainty
we must observe the coin, and then Bayes’ theorem gives a principled account of
how to update our beliefs.

The second type of uncertainty is about a logical fact, about what a known
computation will output when evaluated. In this case, reasoning in isolation can and
should change our beliefs: we can reduce our uncertainty by thinking more about π,
without making any new observations of the external world.

In any given practical scenario, reasoners usually experience a mix of both
empirical uncertainty (about how the world is) and logical uncertainty (about what
that implies). In this paper, we focus entirely on the problem of managing logical
uncertainty. Probability theory does not address this problem, because probability-
theoretic reasoners cannot possess uncertainty about logical facts. For example,
let φ stand for the claim that the 87,653rd digit of π is a 7. If this claim is true,
then (1 + 1 = 2)⇒ φ. But the laws of probability theory say that if A⇒ B then
Pr(A) ≤ Pr(B). Thus, a perfect Bayesian must be at least as sure of φ as they are
that 1 + 1 = 2! Recognition of this problem dates at least back to Good (1950).

Many have proposed methods for relaxing the criterion Pr(A) ≤ Pr(B) until such
a time as the implication has been proven (see, e.g, the work of Hacking [1967] and
Christiano [2014]). But this leaves open the question of how probabilities should be
assigned before the implication is proven, and this brings us back to the search for a
principled method for managing uncertainty about logical facts when relationships
between them are suspected but unproven.

We propose a partial solution, which we call logical induction. Very roughly,
our setup works as follows. We consider reasoners that assign probabilities to
sentences written in some formal language and refine those probabilities over time.
Assuming the language is sufficiently expressive, these sentences can say things
like “Goldbach’s conjecture is true” or “the computation prg on input i produces
the output prg(i)=0”. The reasoner is given access to a slow deductive process
that emits proofs over time, and tasked with assigning probabilities in a manner
that outpaces deduction, e.g., by assigning high probabilities to sentences that are
eventually proven, and low probabilities to sentences that are eventually refuted,
well before they can be verified deductively. Logical inductors carry out this task in
a way that satisfies many desirable properties, including:

1. Their beliefs are logically consistent in the limit as time approaches infinity.
2. They learn to make their probabilities respect many different patterns in logic,

at a rate that outpaces deduction.
3. They learn to know what they know, and trust their future beliefs, while

avoiding paradoxes of self-reference.

These claims (and many others) will be made precise in Section 4.
A logical inductor is any sequence of probabilities that satisfies our logical

induction criterion, which works roughly as follows. We interpret a reasoner’s
probabilities as prices in a stock market, where the probability of φ is interpreted
as the price of a share that is worth $1 if φ is true, and $0 otherwise (similar to
Beygelzimer, Langford, and Pennock [2012]). We consider a collection of stock
traders who buy and sell shares at the market prices, and define a sense in which
traders can exploit markets that have irrational beliefs. The logical induction
criterion then says that it should not be possible to exploit the market prices using
any trading strategy that can be generated in polynomial-time.

Our main finding is a computable algorithm which satisfies the logical induction
criterion, and hence exhibits the properties listed above.

The logical induction criterion can be seen as a weakening of the “no Dutch
book” criterion that Ramsey (1931) and de Finetti (1937) used to support standard
probability theory, which is analogous to the “no Dutch book” criterion that von
Neumann and Morgenstern (1944) used to support expected utility theory. Because
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of the analogy, and the variety of desirable properties that follow immediately from
this one criterion, we believe that the logical induction criterion captures a portion
of what it means to do good reasoning about logical facts in the face of deductive
limitations. That said, there are clear drawbacks to our algorithm: it does not use
its resources efficiently; it is not a decision-making algorithm (i.e., it does not “think
about what to think about”); and the properties above hold either asymptotically
(with poor convergence bounds) or in the limit. In other words, our algorithm gives
a theoretically interesting but ultimately impractical account of how to manage
logical uncertainty.

1.1 Note on abridgment
This paper is an abridged version of a longer paper. In this paper, we de-
scribe the logical induction framework and state a number of properties that fol-
low from it. In the extended version, we give the logical induction algorithm;
proofs that the properties stated here follow from the logical induction crite-
rion; a fuller account of the related work; a discussion of properties not listed
here (calibration, conditional probabilities, etc.); and a more in-depth discus-
sion of our framework and its applications. The extended paper can be found
at https://intelligence.org/files/LogicalInduction.pdf (Garrabrant et al.
2016).

1.2 Related work
The problem of reasoning under logical uncertainty has been studied for quite some
time, and in this abridgement, we lack the space to give anything except the barest
of treatments. Study of the problem dates back to Bernoulli and Boole (1854); the
problem was laid out in a particularly clear fashion by Good (1950). We take the
approach of Gaifman (1964), which is also taken by Demski (2012) and Hutter et al.
(2013). Our framework is heavily inspired by that of Solomonoff (1964) and later
work on that framework done by Zvonkin and Levin (1970) and Li and Vitányi
(1993). The related work in the field of AI is extensive; see Potyka and Thimm
(2015), Richardson and Domingos (2006), and Briol et al. (2015) in particular. Our
interpretation of probabilities as prices in a stock market is quite similar to that of
Beygelzimer, Langford, and Pennock (2012), and our philosophical stance is quite
similar in spirit to the one advocated by Aaronson (2013). This summary is woefully
incomplete; refer to the extended version for a fuller account.

1.3 Overview
In Section 2 we define some notation. In Section 3 we state the logical induction
criterion and our main theorem. The logical induction criterion is motivated by
a series of stock trading analogies, which are also introduced in 3. In Section 4
we discuss a number of properties that follow from the logical induction criterion,
including limit properties (4.1); pattern recognition properties (4.2); and (3) prop-
erties of self-knowledge and self-trust (4.3). For the algorithm, proofs that these
properties and others follow from the criterion, and a discussion of the framework
and its applications, see the extended paper.

2 Notation

This section defines notation used throughout the paper. The reader is invited to
skim it, or perhaps skip it entirely and use it only as a reference when needed.

We denote the set of positive natural numbers by N+, where the superscript
makes it clear that 0 is not included. We work with N+ instead of N≥0 because
we regularly consider initial segments of infinite sequences up to and including the
element at index n, and it will be convenient for those lists to have length n. When
considering continuous functions with range in Q, we use the subspace topology on
Q inherited from R. We use B to denote the set {0, 1} interpreted as Boolean values.
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We generally use the symbols φ, ψ, χ to denote well-formed formulas in some
language of propositional logic L (such as a theory of first order logic, where the
propositional atoms are prime formulas), which includes the basic logical connectives
¬, ∧, ∨, →, ↔, and uses modus ponens as its rule of inference. We assume that L
has been chosen so that its sentences can be interpreted as claims about some class
of mathematical objects, such as natural numbers or computer programs.

We will write logical formulas inside quotes “−”, such as φ := “x = 3”. We
sometimes write things like φ := “Goldbach’s conjecture”, in which case it is under-
stood that the English text could be expanded into a precise arithmetical claim.
We use underlines to indicate when a symbol in a formula should be replaced by
the expression it stands for. For example, if n := 3, then φ := “x > n” means
φ = “x > 3”, and ψ := “φ→ (x = n+ 1)” means ψ = “x > 3→ (x = 3 + 1)”. If φ
and ψ denote formulas, then ¬φ denotes “¬(φ)” and φ ∧ ψ denotes “(φ) ∧ (ψ)” and
so on. For instance, if φ := “x > 3” then ¬φ denotes “¬(x > 3)”.

When we say a theory Γ “can represent computable functions”, we mean that
its language is used to refer to computer programs in such a way that Γ satisfies
the representability theorem for computable functions, which means that for every
(total) computable function f : N+ → N+, there exists a Γ-formula γf with two
free variables such that for all n ∈ N+, Γ proves “∀ν : γf (n, ν)↔ ν = f(n)”, where
“γf (n, ν)” stands, in the usual way, for the formula resulting from substituting an
encoding of n and the symbol ν for its free variables. In this case, we use “f(n)”
as shorthand for the formula “γf (n, ν)”. By convention, we use “f(3) < g(3)” as
shorthand for

“∀xy : γf (3, x) ∧ γg(3, y)→ x < y”,
and so on. In particular, note that writing down a sentence like “f(3) > 4” does not
involve computing the value f(3); it merely requires writing out the definition of γf .
This distinction is important when f has a very slow runtime.

We denote infinite sequences using overlines, like x := (x1, x2, . . .), where it is
understood that xi denotes the ith element of x, for i ∈ N+. To define sequences of
sentences compactly, we use parenthetical expressions such as φ := (“n > 7”)n∈N+ .
We define x≤n := (x1, . . . , xn). Given another element y, we abuse notation in a
common way and define (x≤n, y) = (x1, . . . , xn, y) to be the list x≤n with y appended
at the end. We write () for the empty sequence.

Given any sequences x and y, we write
xn hn yn for lim

n→∞
xn − yn = 0,

xn &n yn for lim inf
n→∞

xn − yn ≥ 0, and

xn .n yn for lim sup
n→∞

xn − yn ≤ 0.

3 The logical induction criterion

In this section, we will develop a framework in which we can state the logical
induction criterion and the properties that follow from it. This will culminate in the
following definition and theorem:

Definition 3.0.1 (The Logical Induction Criterion). A market P is said to
satisfy the logical induction criterion relative to a deductive process D if
there is no efficiently computable trader T that exploits P relative to D. A
market P meeting this criterion is called a logical inductor over D.

Theorem 3.0.2. For any deductive process D, there exists a computable belief
sequence P satisfying the logical induction criterion relative to D.

We will now define markets, deductive processes, efficient computability, traders,
and exploitation.
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3.1 Markets
We will be concerned with methods for assigning values in the interval [0, 1] to
sentences of logic. We will variously interpret those values as prices, probabilities,
and truth values, depending on the context. Let L be a language of propositional
logic, and let S be the set of all sentences written in L. We then define:

Definition 3.1.1 (Valuation). A valuation is any function V : S → [0, 1]. We
refer to V(φ) as the value of φ according to V. A valuation is called rational if its
image is in Q.

First let us treat the case where we interpret the values as prices.

Definition 3.1.2 (Pricing). A pricing P : S → Q∩ [0, 1] is any computable rational
valuation. If P(φ) = p we say that the price of a φ-share according to P is p, where
the intended interpretation is that a φ-share is worth $1 if φ is true.

Definition 3.1.3 (Market). A market P = (P1,P2, . . .) is a computable se-
quence of pricings Pi : S → Q ∩ [0, 1].

We can visualize a market as a series of pricings that may change day by day. The
properties proven in Section 4 will apply to any market that satisfies the logical
induction criterion. Theorem 4.1.2 (Limit Coherence) will show that the prices of a
logical inductor can reasonably be interpreted as probabilities, so we will often speak
as if the prices in a market represent the beliefs of a reasoner, where Pn(φ) = 0.75 is
interpreted as saying that on day n, the reasoner assigns 75% probability to φ.

In fact, the logical inductor that we construct in the extended paper has the
additional property of being finite at every timestep, which means we can visualize
it as a series of finite belief states that a reasoner of interest writes down each day.

Definition 3.1.4 (Belief State). A belief state P : S → Q ∩ [0, 1] is a computable
rational valuation with finite support, where P(φ) is interpreted as the probability
of φ (which is 0 for all but finitely many φ).

We can visualize a belief state as a finite list of (φ, p) pairs, where the φ are unique
sentences and the p are rational-number probabilities, and P(φ) is defined to be p if
(φ, p) occurs in the list, and 0 otherwise.

Definition 3.1.5 (Computable Belief Sequence). A computable belief sequence
P = (P1,P2, . . .) is a computable sequence of belief states, interpreted as a reasoner’s
explicit beliefs about logic as they are refined over time.

We can visualize a computable belief sequence as a large spreadsheet where each
column is a belief state, and the rows are labeled by an enumeration of all logical
sentences. We can then imagine a reasoner of interest working on this spreadsheet,
by working on one column per day.

Philosophically, the reason for this setup is as follows. Most people know that
the sentence “1 + 1 is even” is true, and that the sentence “1 + 1 + 1 + 1 is even” is
true. But consider, is the following sentence true?

“1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 is even”

To answer, we must pause and count the ones. Since we wish to separate the
question of what a reasoner already knows from what they could infer using further
computing resources, we require that the reasoner write out their beliefs about logic
explicitly, and refine them day by day.

In this framework, we can visualize a reasoner as a person who computes the
belief sequence by filling in a large spreadsheet, always working on the nth column
on the nth day, by refining and extending her previous work as she learns new
facts and takes more sentences into account, while perhaps making use of computer
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assistance. For example, a reasoner who has noticed that “1 + · · · + 1 is even” is
true iff the sentence has an even number of ones, might program her computer to
write 1 into as many of the true “1 + · · ·+ 1 is even” cells per day as it can before
resources run out. As another example, a reasoner who finds a bound on the prime
gap might go back and update her probability on the twin prime conjecture. In our
algorithm, the reasoner will have more and more computing power each day, with
which to construct her next belief state.

3.2 Deductive processes
We are interested in the question of what it means for reasoners to assign “rea-
sonable probabilities” to statements of logic. Roughly speaking, we will imagine
reasoners that have access to some formal deductive process, such as a community of
mathematicians who submit machine-checked proofs to an official curated database.
We will study reasoners that “outpace” this deductive process, e.g., by assigning
high probabilities to conjectures that will eventually be proven, and low probabilities
to conjectures that will eventually be disproven, well before the relevant proofs are
actually found.

Definition 3.2.1 (Deductive process). A deductive process D : N+ →
Fin(S) is a computable nested sequence D1 ⊆ D2 ⊆ D3 . . . of finite sets of
sentences. We write D∞ for the union

⋃
nDn.

This is a rather barren notion of “deduction”. We will consider cases where we
fix some theory Γ, and Dn is interpreted as the theorems proven up to and including
day n. In this case, D can be visualized as a slow process that reveals the knowledge
of Γ over time. Roughly speaking, we will mainly concern ourselves with the case
where D eventually rules out all and only the worlds that are inconsistent with Γ.

Definition 3.2.2 (World). A world is any truth assignment W : S → B. If
W(φ) = 1 we say that φ is true in W. If W(φ) = 0 we say that φ is false in W.
We write W for the set of all worlds.

Observe that worlds are valuations, and that they are not necessarily consistent.
This terminology is nonstandard; the term “world” is usually reserved for consistent
truth assignments. Logically uncertain reasoners cannot immediately tell which
truth assignments are inconsistent, because revealing inconsistencies requires time
and effort. In fact, there are multiple notions of “consistency” that are relevant for
our purposes:

Definition 3.2.3 (Propositional Consistency). A world W is called proposition-
ally consistent, abbreviated p.c., if for all φ ∈ S, W(φ) is determined by Boolean
algebra from the truth values that W assigns to the prime formulas of φ. In other
words, W is p.c. if W(φ∧ψ) = W(φ)∧W(ψ), W(φ∨ψ) = W(φ)∨W(ψ), and so on.

Given a set of sentences D, we define PC(D) to be the set of all p.c. worlds where
W(φ) = 1 for all φ ∈ D. We refer to PC(D) as the set of worlds propositionally
consistent with D.

Definition 3.2.4 (Consistency). Given a set of sentences Γ, we say W is consistent
with Γ or Γ-consistent if

Γ ∪ {φ |W(φ) = 1} ∪ {¬φ |W(φ) = 0} 0 ⊥.

We write C(Γ) for the set of Γ-consistent worlds.

Note that a limited reasoner won’t be able to tell whether a given world W is
consistent (by either definition). Roughly speaking, the definition of exploitation
(below) will say that a good reasoner should perform well when measured on day n
by worlds propositionally consistent with Dn, and we ourselves will be interested in
deductive processes that pin down a particular theory Γ by propositional consistency:
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Definition 3.2.5 (Γ-complete). Given a theory Γ, we say that a deductive process
D is Γ-complete if

PC(D∞) = C(Γ).

As a canonical example, let Dn be the set of all theorems of PA provable in at
most n characters.1 Then D is PA-complete, and a reasoner with access to D can
be interpreted as someone who on day n knows all PA-theorems provable in ≤ n
characters, who must manage her uncertainty about other mathematical facts.

3.3 Efficient computability
We use the following notion of efficiency throughout the paper:

Definition 3.3.1 (Efficiently computable). An infinite sequence x is called
efficiently computable, abbreviated e.c., if there is a computable function f
that outputs xn on input n, with runtime polynomial in n.

Our framework is not wedded to this definition; stricter notions of efficiency (e.g.,
sequences that can be computed in O(n2) time) would yield “dumber” inductors
with better runtimes, and vice versa. We use the set of polynomial-time computable
functions because it has some closure properties that are convenient for our purposes.

3.4 Traders
Roughly speaking, traders are functions that see the day n and the history of market
prices up to and including day n, and then produce a series of buy and sell orders,
by executing a strategy that is continuous as a function of the market history.

A linear combination of sentences can be interpreted as a “market order”, where
3φ− 2ψ says to buy 3 shares of φ and sell 2 shares of ψ. Very roughly, a trading
strategy for day n will be a method for producing market orders where the coefficients
are not numbers but functions which depend (continuously) on the market prices
up to and including day n.

Definition 3.4.1 (Valuation Feature). A valuation feature α : [0, 1]S×N+ → R
is a continuous function from valuation sequences to real numbers such that α(V)
depends only on the initial sequence V≤n for some n ∈ N+ called the rank of the
feature, rank(α). For any m ≥ n, we define α(V≤m) in the natural way. We will
often deal with features that have range in [0, 1]; we call these [0, 1]-features.

The following valuation features find the price of a sentence on a particular day:

Definition 3.4.2 (Price Feature). For each φ ∈ S and n ∈ N+, we define a price
feature φ∗n : [0, 1]S×N+ → R by the formula

φ∗n(V) := Vn(φ).

We call these “price features” because they will almost always be applied to a market
P, in which case φ∗n gives the price of φ on day n as a function of P.

Very roughly, trading strategies will be linear combinations of sentences where the
coefficients are valuation features. The set of all valuation features is not computably
enumerable, so we define an expressible subset:

Definition 3.4.3 (Expressible Feature). An expressible feature ξ : [0, 1]S×N+ →
R is a valuation feature expressible by an algebraic expression built from price
features φ∗n for each n ∈ N+ and φ ∈ S, rational numbers, addition, multiplication,

1. Because PA is a first-order theory, and the only assumption we made about L is that
it is a propositional logic, note that the axioms of first-order logic—namely, specialization
and distribution—must be included as theorems in D.
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max(−,−), and a “safe reciprocation” function max(−, 1)−1. See the extended paper
for the full definition.2

We write EF for the set of all expressible features and EFn for the set of expressible
features of rank ≤ n.
Note that for each n, EFn is a commutative ring. We will write 2 − φ∗6 for the
function V 7→ 2− φ∗6(V) and so on, in the usual way. For example, the feature

ξ := max(0, φ∗6 − ψ∗7)

checks whether the value of φ on day 6 is higher than the value of ψ on day 7. If
so, it returns the difference; otherwise, it returns 0. If ξ is applied to a market P,
and P6(φ) = 0.5 and P7(ψ) = 0.2 then ξ(P) = 0.3. Observe that rank(ξ) = 7, and
observe that ξ is continuous.

The reason for the continuity constraint is to allow stable market prices to be
found in the face of paradoxes. For example, consider the sentence φ which says
“the price of φ in this market on day n is less than 50 cents” (constructed, e.g., by
Gödel’s diagonal lemma). What should the fair price be? A share of φ is worth $1 if
its price is less than 50 cents, and $0 otherwise. Thus, if the price of φ is low, it is
worth a lot; but if the price is high, it is worthless. If traders are allowed to buy φ
on day n if it costs less than 50 cents and sell otherwise, then there are no stable
market prices. The continuity constraint requires that if a trader buys at one price
and sells at another, there must be an intermediate price at which they buy/sell
nothing. As we will see later, this guarantees that a stable fixed point can be found
between market prices and trading strategies. Intuitively, the continuity condition
can be interpreted as saying that traders have only finite-precision access to the
market prices.

We are almost ready to define trading strategies as a linear combination of
sentences with expressible features as coefficients. However, there is one more
complication. It will be convenient to record not only the amount of shares bought
and sold, but amount of cash spent or received. For example, consider again the
market order 3φ − 2ψ. If it is executed on day 7 in a market P, and P7(φ) = 0.4
and P7(ψ) = 0.3, then the cost is 3 · 40¢− 2 · 30¢ = 60¢. We can record the whole
trade as an affine combination −0.6 + 3φ− 2ψ, which can be read as “the trader
spent 60 cents to buy 3 shares of φ and sell 2 shares of ψ”. Extending this idea to
the case where the coefficients are expressible features, we get the following notion:
Definition 3.4.4 (Trading Strategy). A trading strategy for day n, also called
an n-strategy, is an affine combination of the form

T = c+ ξ1φ1 + · · ·+ ξkφk,

where φ1, . . . , φk are sentences, ξ1, . . . , ξk are expressible features of rank ≤ n, and

c = −
∑
i

ξiφi
∗n

is a “cash term” recording the net cash flow when executing a transaction that buys
ξi shares of φi for each i at the prevailing market price. (Buying negative shares
is called “selling”.) We define T [1] to be c, and T [φ] to be the coefficient of φ in T ,
which is 0 if φ 6∈ (φ1, . . . , φk).

An n-strategy T can be encoded by the tuples (φ1, . . . φk) and (ξ1, . . . ξk) because
the c term is determined by them. Explicitly, by linearity we have

T = ξ1 · (φ1 − φ1
∗n) + · · ·+ ξk · (φk − φk∗n),

which means any n-strategy can be written as a linear combination of (φi − φi∗n)
terms, each of which means “buy one share of φi at the prevailing price”.

2. In particular, expressible features are a generalization of arithmetic circuits. The
specific definition is somewhat arbitrary; what matters is that expressible features be (1)
continuous; (2) compactly specifiable in polynomial time; and (3) expressive enough to
identify a variety of inefficiencies in a market.
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As an example, consider the following trading strategy for day 5:[
(¬¬φ)∗5 − φ∗5

]
·
(
φ− φ∗5

)
+
[
φ∗5 − (¬¬φ)∗5

]
·
(
¬¬φ− (¬¬φ)∗5

)
.

This strategy compares the price of φ on day 5 to the price of ¬¬φ on day 5. If
the former is less expensive by δ, it purchase δ shares of φ at the prevailing prices,
and sells δ shares of ¬φ at the prevailing prices. Otherwise, it does the opposite. In
short, this strategy arbitrages φ against ¬¬φ by buying the cheaper one and selling
the more expensive one.

We can now state the key definition of this section:

Definition 3.4.5 (Trader). A trader T is a sequence (T1, T2, . . .) where each
Tn is a trading strategy for day n.

We can visualize a trader as a person who gets to see the day n, think for a while,
and then produce a trading strategy for day n, which will observe the history of
market prices up to and including day n and execute a market order to buy and sell
different sentences at the prevailing market prices.

If s := Tn[φ] > 0, we say that T buys s shares of φ on day n, and if s < 0, we
say that T sells |s| shares of φ on day n. Similarly, if d := Tn[1] > 0, we say that T
receives d dollars on day n, and if d < 0, we say that T pays out |d| dollars on day n.

Trade strategies are a special case of affine combinations of sentences:

Definition 3.4.6 (Affine Combination). An F-combination A : S ∪ {1} → Fn is
an affine expression of the form

A := c+ α1φ1 + · · ·+ αkφk,

where (φ1, . . . , φk) are sentences and (c, α1, . . . , αk) are in F . EF , R, and Q-
combinations are defined similarly.

We write A[1] for the trailing coefficient c, and A[φ] for the coefficient of φ,
which is 0 if φ 6∈ (φ1, . . . , φk). The rank of A is defined to be the maximum rank
among all its coefficients. Given any valuation V, we abuse notation in the usual
way and define the value of A (according to V) linearly by:

V(A) := c+ α1V(φ1) + · · ·+ αkV(φk).

We will use these to encode the net holdings
∑
i≤n Ti(P) of a trader after interacting

with a market P, and later to encode linear inequalities that hold between the truth
values of different sentences.

3.5 Exploitation

Definition 3.5.1 (Exploitation). A trader T is said to exploit a valuation
sequence V relative to a deductive process D if the set of values{

W
(∑

i≤n Ti
(
V
)) ∣∣∣n ∈ N+,W ∈ PC(Dn)

}
is bounded below, but not bounded above.

Given a world W, the number W(
∑
i≤n Ti(P)) is the value of the trader’s net

holdings, where a share of φ is valued at $1 if φ is true in W and $0 otherwise. The
set {W(

∑
i≤n Ti)(P) | n ∈ N+,W ∈ PC(Dn)} is the set of all assessments of T ’s

net worth, across all time, according to worlds that were propositionally consistent
with D at the time. We informally call these plausible assessments of the trader’s
net worth. Using this terminology, Definition 3.5.1 says that a trader exploits the
market if their plausible net worth is bounded below, but not above.
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Roughly speaking, we can imagine that there is a person behind the market who
acts as a market maker, obligated to buy and sell shares at the listed prices. We
can imagine that anyone who sold a φ-share is obligated to pay $1 if and when D
says φ. Then, very roughly, a trader exploits the market if they are able to make
unbounded returns off of a finite investment.

This analogy is illustrative but incomplete—traders can exploit the market even
if they never purchase a sentence that appears in D. For example, let φ and ψ
be two sentences such that PA proves (φ ∨ ψ), but does not prove either φ or ψ.
Consider a trader that bought 10 φ-shares at a price of 20¢ each, and 10 ψ-shares at
a price of 30¢ each. Once D says (φ ∨ ψ), all remaining p.c. worlds will agree that
the portfolio −5 + 10φ+ 10ψ has a value of at least +5, despite the fact that neither
φ nor ψ is ever proven. If the trader is allowed to keep buying φ and ψ shares at
those prices, they would exploit the market, despite the fact that they never buy
decidable sentences. In other words, our notion of exploitation rewards traders for
arbitrage, even if they arbitrage between sentences that never “pay out”.

3.6 Main Result
Recall the logical induction criterion and our main theorem:
Definition 3.0.1 (The Logical Induction Criterion). A market P is said to satisfy
the logical induction criterion relative to a deductive process D if there is no
efficiently computable trader T that exploits P relative to D. A market P meeting
this criterion is called a logical inductor over D.

Theorem 3.0.2. For any deductive process D, there exists a computable belief
sequence P satisfying the logical induction criterion relative to D.

Proof. See the extended paper for the algorithm.

Definition 3.6.1 (Logical Inductor over Γ). Given a theory Γ, a logical inductor
over a Γ-complete deductive process D is called a logical inductor over Γ.

Corollary 3.6.2. For any recursively axiomatizable theory Γ, there exists a com-
putable belief sequence that is a logical inductor over Γ.

4 Properties of Logical Inductors

Here is an intuitive argument that logical inductors perform good reasoning under
logical uncertainty:

Consider any polynomial-time method for efficiently identifying patterns
in logic. If the market prices don’t learn to reflect that pattern, a
clever trader can use it to exploit the market. For example, if there
is a polynomial-time method for identifying theorems that are always
underpriced by the market, a clever trader could use that pattern to
buy those theorems low, exploiting the market. To avoid exploitation,
logical inductors must learn to identify many different types of patterns
in logical statements.

In this section, we will provide evidence supporting this intuitive argument, by
demonstrating that a wide selection of desirable properties are satisfied in unison by
logical inductors. In Section 4.1 we will discuss properties that hold in the limit; in
Section 4.2 we will discuss properties related to pattern recognition; in Section 4.3
we will discuss properties related to self-knowledge and self-trust.

In what follows, let L be a language of propositional logic; let S be the set
of sentences written in L; let Γ ⊂ S be a recursively axiomatizable propositional
calculus written in L (such as PA); let D be a Γ-complete deductive process; and
let P be a computable logical inductor over Γ, i.e., a market satisfying the logical
induction criterion relative to D. In Section 4.3 we will assume that Γ can represent
computable functions; this assumption is not necessary until then.
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4.1 Limit properties
The limiting beliefs of P converge, and represent a coherent probability distribution:
Theorem 4.1.1 (Convergence). The limit P∞ : S → [0, 1] defined by

P∞(φ) := lim
n→∞

Pn(φ)

exists for all φ. (Proof in extended paper, B.4.)

Theorem 4.1.2 (Limit Coherence). P∞ is coherent, i.e., it gives rise to an internally
consistent probability measure Pr on the set C(Γ) of all worlds consistent with Γ,
defined by the formula

Pr(W(φ) = 1) := P∞(φ).
In other words, P∞ defines a probability measure on the set of completions of Γ.

(Proof in extended paper, C.10.)

Furthermore, P learns not to assign extreme probabilities to sentences that are
independent from Γ. In fact, the limiting probability of an undecidable sentence is
bounded away from 0 and 1 by an amount proportional to its prefix complexity:
Theorem 4.1.3 (Occam Bounds). There exists a fixed positive constant C such
that for any sentence φ with prefix complexity κ(φ), if Γ 0 ¬φ, then

P∞(φ) ≥ C2−κ(φ),

and if Γ 0 φ, then
P∞(φ) ≤ 1− C2−κ(φ).

(Proof in extended paper, G.3.)

By adding a sequence of zero-arity predicates (b1, b2, . . .) not mentioned in Γ to
the language L, P∞ can be used as a full-fledged sequence predictor. Interpreting
each bi as representing the next bit in a sequence of bits produced by an environment,
one can ask P∞ the probability of a bitstring 00101 by asking for the probability
of the sentence “¬b1 ∧ ¬b2 ∧ b3 ∧ ¬b4 ∧ b5”. The answer will be proportional to the
complexity of the bitstring, which means that P∞ gives rise to a simplicity prior
over bitstrings.
Theorem 4.1.4 (Domination of the Universal Semimeasure). Let (b1, b2, . . .) be a
sequence of zero-arity predicate symbols in the language of Γ not mentioned in the
axioms of Γ, and let σ be an infinite bitstring. Define

P∞(σ≤n) = P∞(“(b1 ↔ σ1 = 1) ∧ (b2 ↔ σ2 = 1) ∧ . . . ∧ (bn ↔ σn = 1)”).

Let M be a universal semimeasure. Then there is some positive constant C such
that for any finite bitstring σ≤n,

P∞(σ≤n) ≥ C ·M(σ≤n).

(Proof in extended paper, G.5.)

In the extended paper we show that this dominance is strict.

4.2 Pattern recognition
Theorem 4.2.1 (Provability Induction). Let φ be an efficiently computable (e.c.)
sequence of theorems. Then

Pn(φn) hn 1.
Furthermore, let ψ be an e.c. sequence of disprovable sentences. Then

Pn(ψn) hn 0.

(Proof in extended paper, C.3.)

11



To see why this theorem is interesting, consider an e.c. sequence φ of theorems which
can be generated in polynomial time, but are quite difficult to prove. Let f(n) be the
time at which D will prove φn, and assume that f is some fast-growing function. At
any given time n, the statement φn is ever further out beyond the current deductive
state Dn—it might take 1 day to prove φ0, 10 days to prove φ1, 100 days to prove
φ2, and so on. One might therefore expect that φn will also be “out of reach” for
Pn, and that we have to wait until a day close to f(n) before expecting the prices
Pf(n)(φn) to be confident in φn. However, this is not the case!

Provability induction says that, for large n and a sequence φ of theorems that
can be efficiently enumerated, Pn(φn) > 1− ε, despite the fact that φn will not be
confirmed deductively until a much later time f(n). In other words, P learns to
assign high probability to the φ faster than D can computationally verify them.

Analogy: Ramanujan and Hardy. Imagine that the statements
φ are being output by an algorithm that uses heuristics to generate
mathematical facts without proofs, playing a role similar to the famously
brilliant, often-unrigorous mathematician Srinivas Ramanujan. Then P
plays the historical role of the beliefs of the rigorous G.H. Hardy who
tries to verify those results according to a slow deductive process. After
Hardy (P) verifies enough of Ramanujan’s claims (φ≤n) according to
some slow deductive process (D), he begins to trust Ramanujan, even if
the proofs of Ramanujan’s later conjectures are impossibly long, putting
them ever-further beyond Hardy’s current abilities to rigorously verify
them. In this story, Hardy’s inductive reasoning (and Ramanujan’s also)
outpaces his deductive reasoning.

This idiom of assigning the right probabilities to φn no later than day n will be
common throughout the paper, so we give it a name.
Definition 4.2.2 (Timely Manner). Let φ be an e.c. sequence of sentences, and
p be an e.c. sequence of rational numbers. We say P assigns p to φ in a timely
manner if for every ε > 0, there exists a time N such that for all n > N ,

|Pn(φn)− pn| < ε.

In other words, P assigns p to φ in a timely manner if

Pn(φn) hn pn.

Note that there are no requirements on how large N gets as a function of ε. As
such, when we say that P assigns p to φ in a timely manner, it may take a very long
time for convergence to occur. (See the extended paper for a discussion.)

As an example, imagine the reasoner who recognizes that sentences of the form
“1 + 1 + · · ·+ 1 is even” are true iff the number of ones is even. Let φ be the sequence
where φn is the version of that sentence with 2n ones. If the reasoner starts writing
a probability near 100% in the φn cell by day n at the latest, then intuitively, she
has begun incorporating the pattern into her beliefs, and we say that she is assigning
high probabilities to φ in a timely manner.

Checking the nth sentence on the nth day is a rather arbitrary choice, and we
might hope that a good reasoner would assign high probabilities to e.c. sequences of
theorems at a faster rate than that. It is easy to show that this is the case, by the
closure properties of efficient computability. In the extended paper, we also show
that if Pn(φn) is close to P∞(φn), then Pm(φn) is also close to P∞(φn) for m ≥ n.
As such, it doesn’t really matter which diagonal Pt(φn) we check when checking
whether or not P has started “recognizing a pattern”, so long as t is related to n
by a polynomial expression. The most natural choice is to check the probability of
the nth sentence on the nth day, and we invite the reader to be on the lookout for
expressions of the form “Pn(φn)” as indications that a logical inductor is outpacing
its underlying deductive process.

Pushing beyond Theorem 4.2.1, we can show that if P is going to learn to assign
p to φ at any point in the future, then it learns to assign p to φ in a timely manner:
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Theorem 4.2.3 (Preemptive Learning). Let φ be an e.c. sequence of sentences.
Then

lim inf
n→∞

Pn(φn) = lim inf
n→∞

sup
m≥n

Pm(φn).

Furthermore,
lim sup
n→∞

Pn(φn) = lim sup
n→∞

inf
m≥n

Pm(φn).

(Proof in extended paper, B.3.)

For example, consider the sequence

πAeq7 :=
(
“π[A(n, n)] = 7”

)
n∈N+

where π[i] is the ith decimal digit of π and A is the Ackermann function. Each
individual sentence is decidable, so the limiting probabilities are 0 for some πAeq7n
and 1 for others. But that pattern of 1s and 0s is not efficiently computable (unless
the Ackermann digits of π are easy to predict). Theorem 4.2.3 says that even so, if
P is going to learn to assign probability 10% to each πAeq7n for a long time while
it waits to learn the Ackermann numbers, then it learns to assign 10% probability
to πAeq7 in a timely manner.

This raises the question of whether logical inductors learn to assign probabilities
like 10% to sequences like πAeq7. We will now answer that question in the affirmative
(assuming the Ackermann digits of π are difficult to predict). This follows from
the fact that logical inductors learn to use appropriate statistical summaries on
sequences of sentences that appear random to P. To formalize this claim, we need
to formalize the idea that a sequence is “apparently random’. Intuitively, this notion
must be defined relative to a specific reasoner and their computational limitations.
After all, the digits of π are perfectly deterministic; they only appear random to a
reasoner who lacks the resources to compute them. We use the following setup:

Definition 4.2.4 (Divergent Weighting). A divergent weighting w ∈ [0, 1]N+ is
an infinite sequence of real numbers in [0, 1], such that

∑
n wn =∞.

Note that divergent weightings have codomain [0, 1] as opposed to {0, 1}, meaning
the weightings may single out fuzzy subsets of the sequence. For purposes of intuition,
imagine that w is a sequence of 0s and 1s, in which case each w can be interpreted as
a subsequence. The constraint that the w(n) sum to∞ ensures that this subsequence
is infinite.

Definition 4.2.5 (Generable From P). A sequence of rational numbers q is called
generable from P if there exists an e.c. EF-progression q† such that q†n(P) = qn
for all n. In this case we say that q is P-generable. P-generable R-sequences,
Q-combination sequences, and R-combination sequences are defined analogously.

Divergent weightings generable from P are fuzzy subsequences that are allowed
to depend continuously (via expressible market features) on the market history.
These are, more or less, the pattern-detectors that logical inductors are able to use
when searching a sequence for one subsequence that is more likely to be true than
all the others. Roughly speaking, if there are no patterns that can be detected in
a sequence by P-generable divergent weightings, then we say that the sequence is
pseudorandom (relative to those weightings):

Definition 4.2.6 (Pseudorandom Sequence). Given a set S of divergent weightings,
a sequence φ of decidable sentences is called pseudorandom with frequency p
over S if, for all weightings w ∈ S,

lim
n→∞

∑
i≤n wi · ThmΓ(φi)∑

i≤n wi

exists and is equal to p.
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Note that if the sequence φ is actually randomly generated (say, by adding (c1, c2, . . .)
to the language of Γ, and tossing a coin weighted with probability p towards heads for
each i, to determine whether to add ci or ¬ci as an axiom) then φ is pseudorandom
with frequency p almost surely.3 Now:

Theorem 4.2.7 (Learning Pseudorandom Frequencies). If φ be an e.c. sequence of
decidable sentences. If φ is pseudorandom over the set of all P-generable divergent
weightings, then

Pn(φn) hn p.
(Proof in extended paper, D.8.)

For example, if the Ackermann digits of n are hard to predict (in the sense that no
P-generable divergent weighting can single out any fuzzy subset where the digits are
particularly likely to be 7), then P assigns probability 10% to πAeq7 in a timely
manner.

Furthermore, logical inductors learn, in a timely manner, to make their probabil-
ities respect linear inequalities that will hold in the truth values between sentences.
For example, consider a computer program prg which outputs either 0, 1, or 2 on
all inputs, but for which the general case cannot be proven by Γ. Theorem 4.2.1
says that the sequence

prg012 :=
(
“prg(n) = 0 ∨ prg(n) = 1 ∨ prg(n) = 2”

)
n∈N+

will be learned, in the sense that P will inductively learn to assign each prg012n a
probability near 1 in a timely manner. But what about the following three individual
sequences?

prg0 :=
(
“prg(n) = 0”

)
n∈N+

prg1 :=
(
“prg(n) = 1”

)
n∈N+

prg2 :=
(
“prg(n) = 2”

)
n∈N+

None of the three are purely theorems, so Theorem 4.2.1 does not apply. If they
are pseudorandom relative to P, then Theorem 4.2.7 says that P will fall back on
the limiting frequencies, but that tells us little in cases where there are predictable
non-conclusive patterns (e.g., if prg(i) is more likely to output 2 when helper(i)
outputs 17). In fact, the probabilities on the (prg0n,prg1n,prg2n) triplet should
shift around over time, as P gains new knowledge about related facts and updates
its beliefs. How could we tell if those intermediate beliefs were reasonable?

One way is to check their sum. If P believes that prg(i) ∈ {0, 1, 2} and it knows
how disjunction works, then it should be the case that whenever Pn(prg012t) ≈ 1,
Pn(prg0t) + Pn(prg1t) + Pn(prg2t) ≈ 1. And this is precisely the case.

Convention 4.2.8 (Constraint). An R-combination C can be viewed as a con-
straint, in which case we say that a valuation V satisfies the constraint if V(C) ≥ 0.

For example, the constraint

AND := −2 + φ+ ψ

says that both φ and ψ are true, and it is satisfied by W iff W(φ) = W(ψ) = 1. As
another example, the pair of constraints

XOR := (1− φ− ψ, φ+ ψ − 1)

say that exactly one of φ and ψ is true, and are satisfied by P7 iff P7(φ) +P7(ψ) = 1.

3. Note that actually adding randomness to Γ in this fashion is not allowed, because we
assumed that the axioms of Γ are recursively computable. It is possible to construct a logical
inductors that have access to a source of randomness, by adding one bit of randomness to
the market each day, but that topic is beyond the scope of this paper.
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Definition 4.2.9 (Bounded Combination Sequences). By BCS(P) (mnemonic:
bounded combination sequences) we denote the set of all P-generable R-
combination sequences A that are bounded, in the sense that there exists some
bound b such that ‖An‖1 ≤ b for all n, where ‖−‖1 includes the trailing coefficient.

Theorem 4.2.10 (Affine Coherence). Let A ∈ BCS(P). Then

lim inf
n→∞

inf
W∈C(Γ)

W(An) ≤ lim inf
n→∞

P∞(An) ≤ lim inf
n→∞

Pn(An),

and
lim sup
n→∞

Pn(An) ≤ lim sup
n→∞

P∞(An) ≤ lim sup
n→∞

sup
W∈C(Γ)

W(An).

(Proof in extended paper, C.1.)

These inequalities tie ground truth on A, to the value of A in the limit, to the
value of A on the main diagonal. In words, it says that if all consistent worlds
W ∈ C(Γ) value An in (a, b) for n large, then P∞ values An in (c, d) ⊆ (a, b) for n
large (because P∞ is a weighted mixture of all consistent worlds), and P learns to
assign probabilities Pn(An) ∈ (c, d) in a timely manner. In colloquial terms, P learns
in a timely manner to respect all linear inequalities that actually hold between
sentences, so long as those relationships can be enumerated in polynomial time.

For example, consider the constraint sequence

A :=
(
1− prg0n − prg1n − prg2n

)
n∈N+

For all n and all consistent worlds W ∈ C(Γ), the value W(An) is 0, so applying
Theorem 4.2.10 to A, we get that Pn(An) hn 0. By linearity, this means

Pn(prg0n) + Pn(prg1n) + Pn(prg2n) hn 1,

i.e., P learns that the three sequences are mutually exclusive and exhaustive in a
timely manner, regardless of how difficult prg is to evaluate.

This doesn’t mean that P will assign the correct values (0 or 1) to each sentence
in a timely manner; that would be impossible for a deductively limited reasoner.
Rather, P’s probabilities will start satisfying the constraints in a timely manner. For
example, imagine a set of complex constraints holds between seven sequences, such
that exactly three sentences in each septuplet are true, but it’s difficult to tell which
three. Then P will learn this pattern, and start ensuring that its probabilities on
each septuplet sum to 3, even if it can’t yet assign particularly high probabilities to
the correct three.

If we watch an individual septuplet as P reasons, other constraints will push the
probabilities on those seven sentences up and down. One sentence might be refuted
and have its probability go to zero. Another might get a boost when P discovers
that it’s likely implied by a high-probability sentence. Another might take a hit
when P discovers it likely implies a low-probability sentence. Throughout all this,
Theorem 4.2.10 says that P will ensure that the seven probabilities always sum to
≈ 3. P’s beliefs on any given day arise from this interplay of many constraints,
inductively learned.

4.3 Self-knowledge
Logical inductors also learn to know what they know, and trust their future beliefs,
in a way that avoids paradox. For starters,

Theorem 4.3.1 (Introspection). Let φ be an e.c. sequence of sentences, and a, b
be e.c. sequences of probabilities expressible from P. Then, for any e.c. sequence of
positive rationals δ → 0, there exists a sequence of positive rationals ε→ 0 such that
for all n:
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1. if Pn(φn) ∈ (an + δn, bn − δn), then

Pn(“an < Pn(φn) < bn”) > 1− εn,

2. if Pn(φn) /∈ (an − δn, bn + δn), then

Pn(“an < Pn(φn) < bn”) < εn.

(Proof in extended paper, F.1.)

Roughly speaking, this says that if there is an e.c. pattern of the form “your
probabilities on φ will be between (a, b)” then P will learn to believe that pattern iff
it is true, subject to the caveat that its self-knowledge has only finite precision (i.e.,
if its beliefs are extremely close to a then it can’t always tell which side of a they
are on). This “finite-precision self-knowledge” allows logical inductors to avoid the
classic paradoxes of self-reference:

Theorem 4.3.2 (Paradox Resistance). Fix a rational p ∈ (0, 1), and define a
sequence of “paradoxical sentences” χp satisfying

Γ ` χpn ↔
(
Pn(χpn) < p

)
for all n. Then

lim
n→∞

Pn(χpn) = p.

(Proof in extended paper, F.2.)

A logical inductor responds to paradoxical sentences χp by assigning probabilities
that converge on p. For example, if the sentences say “P will assign me a probability
less than 80% on day n”, then Pn (once P has learned the pattern) starts assigning
probabilities extremely close to 80%—so close that polynomial-runtime traders can’t
tell if it’s slightly above or slightly below.

To visualize this, imagine that someone who owns a high-precision brain-scanner
and can read off your beliefs, asks you what probability you assign to the claim “you
will assign probability <80% to this claim at precisely 10am tomorrow”. As 10am
approaches, what happens to your belief in this claim? If you become extremely
confident that it’s going to be true, then your confidence should drop. But if you
become highly confident it’s going to be false, then your confidence should spike.
Thus, your probabilities should oscillate, pushing your belief so close to 80% that
you’re not quite sure which way the brain scanner will actually call it. In response
to paradoxical sentences, this is exactly how a logical inductor behaves, once it’s
learned how they work.

To go further, we need to define expected values taken with respect to P, which
we do as follows.

Definition 4.3.3 (Logically Uncertain Variable). A logically uncertain variable,
abbreviated LUV, is any formula X free in one variable that defines a unique value
via Γ, in the sense that

Γ ` ∃x : ∀x′ : X(x′)→ x′ = x.

Given a LUV X and a consistent world W ∈ C(Γ), the value of X in W is
defined to be

W(X) := sup
x∈[0,1]

W(“X ≥ x”) = 1.

In other words, W(X) is the supremum of values in W that do not exceed X. (This
rather roundabout definition is necessary to handle cases where W assigns X a
non-standard value.)

We write U for the set of all [0, 1]-LUVs. When manipulating logically uncertain
variables, we use shorthand like “X < 0.5” for “∀x : X(x)→ x < 0.5”, and so on.

16



For example, H := “ν = 0.5” is a LUV. As another example, TPC := “(ν =
1 ∧ Goldbach’s conjecture) ∨ (ν = 0 ∧ ¬Goldbach’s conjecture)” is a LUV whose
value is somewhat more difficult to determine.

We can now define expectations of LUVs with respect to a given pricing. The
first impulse is to use a Riemann sum; this is unsatisfactory, because if P has
not yet figured out that a LUV X has a unique value, then it might assign high
probability to X being in multiple different places in the [0, 1] interval, in which case
the expectation of a [0, 1]-LUV would not necessarily be a [0, 1]-LUV. So instead,
we define expectations using an analog of a cumulative density function:

Definition 4.3.4 (Expectation). For a given valuation V, we define the approxi-
mate expectation operator EV

k for V with precision k by

EV
k (X) :=

k−1∑
i=0

1
k
V(“X > i/k”).

where X is a [0, 1]-LUV.

We will often want to take a limit of EPn

k (X) as both k and n approach ∞. We
hereby make the fairly arbitrary choice to focus on the case k = n for simplicity,
adopting the shorthand

En := EPn
n

In other words, when we examine how a logical inductor’s expectations change
on a sequence of sentences over time, we will (arbitrarily) consider approximate
expectations that gain in precision at a rate of one unit per day.

We will now show that the expectation operator En possesses properties that
make it worthy of that name.

Theorem 4.3.5 (Expectations Converge). The limit E∞ : S → [0, 1] defined by

E∞(X) := lim
n→∞

En(X)

exists for all X ∈ U . (Proof in extended paper, E.4.)

Theorem 4.3.6 (Linearity of Expectation). Let α, β be bounded e.c. sequences
of rational numbers expressible from P, and let X,Y , and Z be e.c. sequences of
[0, 1]-LUVs. If we have Γ ` Zn = αnXn + βnYn for all n, then

αnEn(Xn) + βnEn(Yn) hn En(Zn).

(Proof in extended paper, E.9.)

Theorem 4.3.7 (Expectation Coherence). Let BLCS(P) be the set of all bounded
LUV-combination sequences, defined analogously to definitions 3.4.6, 4.2.5, and 4.2.9.
(See the appendix for details.) Let B ∈ BLCS(P). Then

lim inf
n→∞

inf
W∈C(Γ)

W(Bn) ≤ lim inf
n→∞

E∞(Bn) ≤ lim inf
n→∞

En(Bn),

and
lim sup
n→∞

En(Bn) ≤ lim sup
n→∞

E∞(Bn) ≤ lim sup
n→∞

sup
W∈C(Γ)

W(Bn).

(Proof in extended paper, E.7.)

Many other properties of the expectation operator are discussed in the extended
version.

We can now show that logical inductors trust their future beliefs:

Definition 4.3.8 (Deferral Function). A function f : N+ → N+ is called a deferral
function if
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1. f(n) > n for all n, and

2. f(n) can be computed in time polynomial in f(n), i.e., if there is some algorithm
and a polynomial function h such that for all n, the algorithm computes f(n)
within h(f(n)) steps.

If f is a deferral function, we say that f defers n to f(n).

Theorem 4.3.9 (No Expected Net Update). Let f be a deferral function, and let
φ be an e.c. sequence of sentences. Then

Pn(φn) hn En(“Pf(n)(φn)”).

(Proof in extended paper, F.6.)

Roughly speaking, this says that if P on day n believes that on day f(n) it will
believe φn with high probability, then it already believes φn with high probability
today. In other words, logical inductors learn to adopt their predicted future beliefs
as their current beliefs in a timely manner—they don’t say “tomorrow I expect to
believe that φ is true, but today I think it’s false”.

We will also show that, roughly speaking, logical inductors trust that if their
beliefs change, then they must have changed for good reasons. To do this, we
first define an indicator LUV 1(φ), which is 1 if φ is true and 0 otherwise, and a
continuous threshold indicator Indδ(x > y) which is 1 if x is unambiguously greater
than y, 0 if x is less than y, and intermediate when the case is unclear.

Definition 4.3.10 (Indicator LUVs). For any sentence φ, we define its indicator
LUV by the formula

1(φ) := “(φ ∧ (ν = 1)) ∨ (¬φ ∧ (ν = 0))”.

Definition 4.3.11 (Continuous Threshold Indicator). Let δ > 0 be a rational
number, and x and y be real numbers. We then define

Indδ(x > y) :=


0 if x ≤ y
x− y
δ

if y < x ≤ y + δ

1 if y + δ < x.

Notice that Indδ(x > y) has no false positives, and that it is linear in the region
between y and y + δ. We define Indδ(x < y) analogously, and we define

Indδ(a < x < b) := min(Indδ(x > a), Indδ(x < b)).

Observe that we can generalize this definition to the case where x and y are expressible
features, in which case Indδ(x > y) is an expressible [0, 1]-feature.

Then:

Theorem 4.3.12 (Self-Trust). Let f be a deferral function, φ be an e.c. sequence
of sentences, δ be an e.c. sequence of positive rational numbers, and p be an e.c.
sequence of rational probabilities expressible from P. Then

En
(

“1(φn) · Indδn

(
Pf(n)(φn) > pn

)
”
)
&n pn · En

(
“Indδn

(
Pf(n)(φn) > pn

)
”
)
.

(Proof in extended paper, F.8.)

Very roughly speaking, if we squint at Theorem 4.3.12, it says something like

Enow(φ | Plater(φ) > p) & p,
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i.e., if we ask P what it would believe about φ now if it learned that it was going
to believe φ with probability at least p in the future, then it will answer with a
probability that is at least p.

As a matter of fact, Theorem 4.3.12 actually says something slightly weaker, which
is also more desirable. Let each φn be the self-referential sentence “Pf(n)(φn) < 0.5”
which says that the future Pf(n) will assign probability less than 0.5 to φn. Then,
conditional on Pf(n)(φn) ≥ 0.5, Pn should believe that the probability of φn is 0.
And indeed, this is what a logical inductor will do:

Pn
(

“φn ∧ (Pf(n)(φn) ≥ 0.5)”
)
hn 0,

because each of those conjunctions is disprovable. This is why Theorem 4.3.12 uses
continuous indicator functions: With discrete conjunctions, the result would be
undesirable (not to mention false).

What Theorem 4.3.12 says is that P attains self trust of the “if in the future I
will believe x is very likely, then it must be because x is very likely” variety, given
finite-precision access to its future beliefs. In doing so, it retains the ability to think
it can outperform its future self’s beliefs when its future self confronts paradoxes.
In colloquial terms, if we ask “what’s your probability on the paradoxical sentence
φn given that your future self believes it with probability exactly 0.5?” then P
will answer “very low”, but if we ask “what’s your probability on the paradoxical
sentence φn given that your future self believes it with probability extremely close
to 0.5?” then P will answer “roughly 0.5.”

Still speaking roughly, this means that logical inductors trust their future beliefs
to be accurate and only change for good reasons. Theorem 4.3.12 says that if you
ask “what’s the probability of φ, given that in the future you’re going to believe it’s
more than 95% likely?” then you’ll get an answer that’s no less than 0.95, even if
the logical inductor currently thinks that φ is unlikely.

5 Discussion

In the extended version of this paper, we give a logical induction algorithm, and
provide proofs of the above theorems, and discuss a number of other types of
properties (relating, e.g., to calibration and conditional probabilities). We also
defer an extended discussion of this framework and its applications to the extended
version.
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