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Abstract

We present a computable algorithm for assigning probabilities to sentences of
logic, such as sentences of the form “this long-running computation outputs
3” or “the twin prime conjecture is true”. This algorithm can be seen as an
inductive process that out-paces deduction, in that it learns to accurately
predict the results of long-running deductions well before they finish, by
observation of shorter-running ones. The algorithm has a number of good
inductive, deductive, and reflective properties. It inductively learns to assign
probabilities that respect logical relationships between sentences (such as
that a given computer program only ever produces a certain type of output)
in a timely manner, so long as the proposed relationship can be written
down in polynomial time. It inductively learns to fall back on appropriate
statistical summaries in the face of sequences that appear pseudorandom (such
as “the nth digit of π is a 7” for large n). In the limit it obeys all logical
constraints and learns all logical facts; our algorithm can in fact be viewed
as a computable approximation to a probability distribution that dominates
the universal semimeasure. It trusts its own probabilities, in the sense that,
roughly speaking, it knows what it knows, and trusts its future beliefs to be
more accurate than its current beliefs.

These properties and others all follow from a single logical induction criterion,
which is motivated by a series of stock trading analogies. Roughly speaking,
we interpret the belief-state of a logically uncertain reasoner as a set of market
prices: P (φ) = 50% is interpreted as saying that a note that pays out $1 if φ
is proven costs 50 cents. The logical induction criterion states that it should
not be possible for a stock trader to exploit a good logical reasoner’s prices,
e.g., via arbitrage, using any strategy that can be implemented in polynomial
time. This criterion bears strong resemblance to the “no Dutch book” criteria
that support both expected utility theory (von Neumann and Morgenstern
1944) and Bayesian probability theory (Ramsey 1931; de Finetti 1979).

1 Introduction

Consider encountering a computer connected to an input wire and an output wire.
If you know what computer program it implements, then there are two distinct ways
to be uncertain about its outputs. You could be uncertain about the input—maybe
it’s determined by a coin toss you didn’t see. Alternatively, you could know the
input, but be uncertain because you haven’t had the time to reason out what the
program actually outputs—perhaps the program searches efficiently for proofs of the
Riemann hypothesis for a large finite amount of time, and you know exactly how
the program works, but you’re not sure whether the search will succeed.

The first type of uncertainty is about empirical facts. No amount of thinking
about the coin toss will tell you its value until you observe the result. When you
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make new observations that provide evidence about empirical facts, probability
theory gives a principled account of how to manage that kind of uncertainty, via
Bayes’ theorem.

The second type of uncertainty is about logical facts, such as how a known
program actually behaves. In this case, reasoning alone in a dark room can change
your beliefs over time. You can reduce your uncertainty by thinking more about the
program, without making any new observations of the external world.

It’s not yet clear, in principle, how to manage logical uncertainty, nor what
it means for a reasoner to do “good reasoning” about logical facts in the face of
deductive limitations. For example, every mathematician has experienced uncertainty
about conjectures for which there is “quite a bit of evidence”, such as the Riemann
hypothesis or the Goldbach conjecture. When the authors heard that Ramaré (1995)
had showed that every even number is the sum of at most 6 primes, we were tempted
to increase our credence in the Goldbach conjecture. How much evidence does
Ramare’s proof provide? Can we quantify the degree to which it should increase our
confidence?

The natural impulse is to appeal to probability theory in general and Bayes’
theorem in particular. Bayes’ theorem gives rules for how to use observations to
manage empirical uncertainty about unknown events in the physical world. However,
uncertainty about a deterministic proposition like φ = “the 10100th digit of π is 7”
is of a different nature. No amount of reasoning about a fair coin flip will change
one’s probability from 50% on either outcome until the coin is revealed. But thinking
about φ for a very long time, you could (rightly) move your credence in φ from
something agnostic (like 10%) to something close to 0% or 100%, without ever
observing a new piece of sensory data.

Probability theory lacks the tools to describe this sort of “logical update”. For
example, suppose the 10100th digit of π is 8, in which case φ is false. Then we
have the implication > → ¬φ, where the left hand side is tautological, and so has
probability 1. But in probability theory, when A→ B, we must have P(A) ≤ P(B).
Hence, a probability-theoretic reasoner must assign probability ≈ 1 to ¬φ!

Many myriad solutions have been proposed for solving this problem. For example,
Hacking (1967), Demski (2012), and Christiano (2014) propose different methods
for relaxing the restraint that P (A) ≤ P (B) until such a time as the implication
A→ B has been proven. But then there remains the question of how probabilities
should be assigned before an implication is proven (such as when an implication
is suspected), and this brings us back to the search for a principled method for
assigning probabilities to unproven mathematical conjectures, and updating them in
response to the discovery of new mathematical facts. It is this question that logical
induction attempts to address.

We propose a solution, which we call the logical induction criterion. Our basic
setup works as follows. We will consider reasoners that assign explicit probabilities
to sentences of logic and refine those probabilities over time, where those sentences
can make claims like “prg(i)=0” or “the 10100th digit of π is 7” or “Goldbach’s
conjecture is true”. We will interpret a reasoner’s probabilities as prices in a stock
market, where the probability that a reasoner assigns to a sentence φ is interpreted
as the price of a note that pays out $1 if φ turns out to be true. We will have new
knowledge of logical facts enter the market each day, via some slow deductive process
(such as a theorem prover). We will consider a collection of efficient (polynomial-
time) stock traders who buy and sell shares at the market prices using trading
strategies that vary continuously in the market prices. (The reason for the continuity
constraint will be discussed later; in short, it allows the market to avoid the classic
paradoxes of self-reference.) Our criterion then says that the market prices that a
good reasoner writes down should not be exploitable, in the sense that no stock
trader should be able to attain unbounded returns off of a finite risk.

The logical induction criterion can be seen as a weakening of the “no Dutch book”
criterion that (Ramsey 1931; de Finetti 1979) used to support standard probability
theory. Under this interpretation, our property says (roughly) that a rational
deductively limited reasoner should have beliefs that can’t be exploited indefinitely
by any Dutch book constructed by an efficient (polynomial-time) algorithm.
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Logical inductors satisfy many desirable properties, including:

• They are logically consistent in the limit.
• They dominate the universal semimeasure in the limit.
• They learn inductively to assign high probability to any pattern of theorems

that can be generated in polynomial-time, even if the underlying deductive
process is very slow to prove those theorems.

• They learn to make their probabilities of statements respect linear inequalities
that will hold of the truth values of those statements in the limit.

• They learn to use appropriate statistical summaries on apparently pseudoran-
dom sequences (such as “the nth digit of π is a 7” for large n).

• They learn to correctly answer questions about their own beliefs (such as “is
your probability of φ between a and b?”) while avoiding paradox.

• They learn to trust their future beliefs.

Below, we will formalize precise versions of each of these claims.
Our main result is a computable algorithm which implements a logical inductor.

This paper is an abbreviated version of a longer paper, and so we will only prove a
handful of the above claims, after giving the main algorithm. The extended paper
contains proofs of the rest, as well as proofs of generalized and strengthened versions
of the properties listed here, as well as proofs of a number of other properties
(calibration, learning to trust the underlying theory, the behavior of conditional
probabilities, etc.). The extended version also includes speculation about why this
framework works, and a discussion of potential applications. It has not yet been
published; email rob@intelligence.org if you would like a copy upon its release.

1.1 Related work

The body of related work is too large to do justice here. Our algorithm follows in
the footsteps of Gaifman (1964), who considers the problem of assigning coherent
probabilities to sentences of logic. This approach has also been pursued by Demski
(2012), Christiano (2014), and Hutter et al. (2013), among others. We draw heavy
inspiration from Solomonoff’s theory of inductive inference (Solomonoff 1964) and
the related theoretical work of L.A. Levin, e.g., on the universal semimeasure (Levin
1974). We also draw heavy inspiration from the “no Dutch book” criteria that
support probability theory (Ramsey 1931; de Finetti 1979) and expected utility
theory (von Neumann and Morgenstern 1944).

Reasoning under logical uncertainty has been studied by many over the years,
in many different contexts. For a discussion of the problem of “logical omniscience”
(many natural models of good reasoning implicitly require the reasoner to be om-
niscient about logical facts), refer to Hintikka (1975), Rantala (1975), and Fagin
et al. (1995). Refer to Good (1950) and Hacking (1967) for a discussion of ways
to weaken probability theory to allow for deductive limitations. Refer to Carnap
(1962) and Savage (1967, Sec. 53) for some discussions of the different desiderata
that logically uncertain reasoners should satisfy. Refer to Hintikka (1962) and
Campbell-Moore (2015) for a discussion of the difficulties that arise when attempting
to define reasoners that know what they know. In the field of AI, refer to Hay et al.
(2012) for a discussion of the problem of reasoning about what to reason about
under deductive limitations. For a discussion of the relationships between logical
uncertainty and computational complexity theory, refer to Aaronson (2013). This
list is woefully incomplete; refer to Hutter et al. (2013) for a more thorough review
of the study of logical uncertainty across the years, and refer to the extended version
of this paper for a more thorough discussion of how different works relate to our
results in particular.

3



2 Setup

2.1 Notation

We will put logical sentences in quotes, like φ := “x = 3”. We will use underlines to
denote the splicing of a metalanguage variable into a logical sentence, for example,
if ψ := “y > 3 → φ” then ψ denotes the sentence “y > 3 → x = 3”. If φ and ψ
denote sentences, then ¬φ denotes “¬(φ)” and φ ∧ ψ denotes “(φ) ∧ (ψ)” and so
on. If f is some computable function, it is understood that “f(7)” can be expanded
into a precise claim written in the language of Peano Arithmetic (PA). Similarly,
we will sometimes write things like φ := “Goldbach’s conjecture”, in which case it
is understood that the English text could be expanded into a precise arithmetical
claim.

We define N+ = (1, 2, . . .) to be the positive natural numbers. We use N+ instead
of N≥0 because we will commonly consider initial segments of infinite sequences up
to and including the element at index n, and it will be convenient for those lists to
have length n. When we discuss numbers colloquially (such as saying “on each day
n”), it should be understood that we are implicitly quantifying over N+

We denote infinite sequences using boldface, like x = (x1, x2, . . .), where it is
understood that xi denotes the ith element of x, for i ∈ N+. Boldface letters usually
denote finite lists; we will find it convenient to use them to denote infinite lists, as
we regularly manipulate infinite sequences. When writing sequences out, we use
parenthesis, like ψψψ = (“n > 7”)n∈N+ which defines the sequence (“1 > 7”, “2 >
7”, “3 > 7”, . . .).

Given any sequences x and y, we write

xn hn yn for lim
n→∞

xn − yn = 0,

xn &n yn for lim inf
n→∞

xn − yn ≥ 0, and

xn .n yn for lim sup
n→∞

xn − yn ≤ 0.

2.2 Uncertain reasoners

You might know that “>” is true, and that “¬¬>” is true, but do you know whether

“¬¬¬¬¬¬¬¬¬¬¬¬¬>”

is true? To find out, you have to pause and apply a pattern. To sidestep the problem
of defining whether or not a reasoner “really knows” a pattern, we will consider
reasoners that write out explicit beliefs about logical sentences, and refine them over
time.

Definition 2.1 (Explicit belief state). An explicit belief state P : Λ→ [0, 1] ∩Q
is a computable function from sentences to rational probabilities with finite support.

Definition 2.2 (Reasoning process). A reasoning process is a computable se-
quence P = (P1, P2, . . .) of explicit belief states, interpreted as a reasoner’s explicit
beliefs about logic as they are refined over time.

You can visualize an explicit belief state as a giant row of cells, one for each logical
sentence, where the reasoner has written a probability in finitely many of those cells.
You can visualize a reasoning process as a great table of explicit belief states, where
the reasoner adds one new one per day. You can visualize the reasoner as a person
who writes rational probabilities in the cells, perhaps using computer assistance, as
they learn things about logic. For example, once they notice the ¬2n> pattern, they
might program their computer to write 1 in the ¬2n> cells as fast as possible.

We will be concerned with reasoning processes that contain explicit patterns,
such as sequences of theorems that are all given high probabilities in a timely fashion.
We mainly consider sequences of sentences that can be generated by some reasoner
with polynomial runtime.
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Definition 2.3 (Efficiently enumerable). An infinite sequence φφφ is called efficiently
enumerable, abbreviated e.e., if there is a computable function f that outputs φn
on input n, with runtime polynomial in n.

When checking whether a reasoning process has begun explicitly “recognizing”
an e.e. sequence of sentences, we will check whether the reasoning process has begun
assigning specific probabilities to at least one new instance of the pattern per day.

Definition 2.4 (Timely manner). Let φφφ be an e.e. sequence of sentences, and p
a sequence of probabilities. We say that a reasoner P assigns p to φφφ in a timely
manner if for every ε > 0, there exists a time N such that for all n > N ,

|Pn(φn)− pn| < ε.

In other words, P assigns p to φφφ in a timely manner if the timely responses of P to
φφφ satisfy

Pn(φn) hn pn.
For example, let φn be 2n ¬ symbols followed by a > symbol. If there comes a
day when the reasoner is assigning φn a probability near 1 no later than the nth
day, we will say that they have begun assigning probabilities near 1 to the φφφ in a
timely manner, and we will sometimes colloquially say that their explicit beliefs have
started respecting the pattern. Checking the nth element of the sequence on the
nth day is a rather arbitrary choice; the specific diagonal chosen does not matter.
For instance, we will consider reasoners that assign every e.e. sequence of theorems
probabilities near 1 in a timely manner, and because (φ2n)n∈N+ and (φ2n+1)n∈N+

are both efficiently enumerable when φφφ is, any reasoner with this property must
eventually start taking the φn at a rate of at least two per day (and at least three
per day, and so on).

2.3 Markets and traders

We will interpret the probabilities that the reasoner writes down as the prices in a
market populated by continuous, polynomial-time traders. We now define markets
and traders.

Definition 2.5 (Price table). A price table P : Λ→ [0, 1] ∩Q is any computable
function from sentences to rational probabilities. We refer to P (φ) as the price of φ,
and if P (φ) = p we say that the price of a φ-share is p (where it is understood that
a φ-share pays out $1 if φ gets proven).

Definition 2.6 (Market). A market is a computable sequence P = (P1, P2, . . .) of
price tables.

We denote both markets and reasoning processes by P , because throughout this
paper, we will only ever consider reasoning processes that are also markets. Markets
differ in that they do not require finite support at all times. (In other works, we
will consider logical inductors that satisfy the logical induction criterion, but do not
have finite support.)

Traders will use the following two data types to make their trades:

Definition 2.7 (Market history). The market history of P on day n is the
sequence P≤n = (P1, P2, . . . , Pn) of price tables in P up to and including the prices
on day n. We sometimes call P≤n the n-history of P .

Definition 2.8 (Market feature). A market feature x : [0, 1]n×Λ → R for day n
is a continuous rational function1 from n-histories P≤n to real numbers x(P≤n).
We will commonly assume that P and n are clear from context, and abbreviate
x(P≤n) as x, and treat market features as scalars. We write Rn for the set of
market n-features.

1. A market feature can be represented as an expression composed from rational numbers,
addition, multiplication, a “safe reciprocation” function 1/max( ·, 1), unique symbols for
each Pi(φ), a finite list of variables, and a dictionary that assigns each variable to another
expression. The dictionary is necessary to make it possible to write out interesting
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Definition 2.9 (Trade). A trade r is a finite linear combination of sentences with
real coefficients:

r = α1φ1 + · · ·+ αkφk.

We write r(φ) for the coefficient α ∈ R of a sentence φ in r. The number r(φ) will
be interpreted as a number of shares, owned or bought, which will settle to $1 per
share if φ is determined to be true, or $0 if φ is determined to be false. We measure

trades with the `1 norm, i.e., |r| :=
∑k
i=1 αi. We denote the set of trades by R〈Λ〉.2

Definition 2.10 (Trading strategy). A trading strategy for day n, also called an
n-strategy, is a finite linear combination of sentences with market n-features as
coefficients:

t = x1φ1 + · · ·+ xkφk.

We write: t(φ) for the coefficient x of φ, and t(P≤n) for the trade
∑
i xi(P≤n)φi.

Thus t can be viewed either as a finite-support function from sentences to market
n-features, or as a function from market n-histories to trades. We denote the set of
trading n-strategies by Rn〈Λ〉.3

The reason for the continuity constraint is to allow stable market prices to be
found in the face of paradoxes. For example, consider the sentence φ which says
“the price of φ in this market on day n is less than 50 cents” (constructed, e.g., by
Gödel’s diagonal lemma). What should the fair price be? φ pays out $1 if its price
was less than 50 cents, and $0 otherwise. Thus, if the price of φ is low, it is worth a
lot; but if the price is high, it is worthless. If traders are allowed to buy φ on day
n if it costs less than 50 cents and sell otherwise, then there are no stable market
prices. The continuity constraint requires that if a trader buys at one price and sells
at another, there must be an intermediate price at which they buy/sell nothing. As
we will see later, this guarantees that a stable fixed point can be found between
market prices and trading strategies.

The continuity condition can be interpreted as saying that traders have only
finite-precision access to the market prices.

Definition 2.11 (Trader). A trader is a computable function t : (n : N+)→ Rn〈Λ〉
which takes the day n as input, and produces a trading strategy for day n as output,
with runtime polynomial in n. In other words, a trader is an efficiently enumerable
sequence of trade strategies. We write tn for the trading strategy the trader produces
on day n, and thus tn(φ) for the market feature describing how many shares of φ
the trader buys or sells on day n (sometimes interpreted as a scalar). We write T
for the set of all traders.

2.4 How knowledge enters the market

We will imagine φ-shares paying out if and when the sentence φ is proven. We remain
agnostic about exactly how logical facts enter the market, and instead consider
markets paired with a sequence of sets of “seemingly plausible” truth assignments
that get whittled down over time.

Definition 2.12 (World). A world W is any function Λ→ B, i.e., it is a (possibly
inconsistent) assignment of truth values to sentences in Λ.

expressions efficiently; without the ability to factor sub-expressions out into variables,
some simple patterns of expressions are impossible to generate in polynomial time. This
definition is somewhat arbitrary; refer to the extended paper for details, examples, and
a discussion of variations. What actually matters is that market features must be (1)
smooth in a fashion that allows stable market prices to be found; (2) compactly specifiable
in polynomial time; and (3) expressive enough to identify a variety of inefficiencies in a
market. The reasons for these requirements will be discussed shortly.

2. We use this notation because the set of all trades is equal to the vector space spanned
by Λ over R.

3. We use this notation because the set of all trading n-strategies is equal to the free
module spanned by Λ over Rn, which is a commutative ring.
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This terminology is nonstandard; the word “world” is usually reserved for consistent
truth assignments. But when reasoning under logical uncertainty, reasoners can’t
tell the difference between contradictory and non-contradictory worlds, so we make
a distinction between arbitrary truth assignments (“worlds”) and consistent truth
assignments.

Definition 2.13 (Consistent world). A world W is called consistent if

Γ ∪ {φ |W (φ) = 1} ∪ {¬φ |W (φ) = 0}

is consistent.

Definition 2.14 (Deductive state). A deductive state D is a non-empty set of
worlds.

Definition 2.15 (Plausible world). A world W is called plausible (relative to a
deductive state D) if W ∈ D.

Definition 2.16 (Deductive process). Given a sequence of deductive states D,

define the function PlausibleD : N+ × Λ<ω × Λ<ω → B to take two finite lists of
sentences (φ1, . . . , φj) and (ψ1, . . . , ψk), and return 1 if Dn contains a world in
which all of the φi are true and all of the ψi ∈ψψψ are false, and 0 otherwise. D is
called a deductive process if

1. D is decreasing, i.e., if j > i⇒ Dj ⊆ Di,

2. PlausibleD is computable.

Definition 2.17 (Then-plausible worlds). Given a deductive process D, the set
W of then-plausible worlds is the collection of pairs (W,n) of worlds W that
were plausible on some day according to D, paired with days n on which they were
plausible:

W :=
⊔
n

Dn =
⋃
n

⋃
W∈Dn

(W,n).

We will generally consider a market P paired with a deductive process D. We don’t
much care how the deductive process works, so long as the worlds that are ruled
out are in fact inconsistent, and such that every inconsistent world is ruled out
eventually.

Definition 2.18 (Γ-valid deductive process). A deductive process D is Γ-valid if⋂
nDn, written D∞, is equal to the set of completions of Γ.

As an example, let ConPA
n be the set of all W such that there is no proof of ⊥

with ≤ n characters from PA ∪ {φ | W (φ) = 1} ∪ {¬φ | W (φ) = 0}, i.e., ConPA
n is

the set of all worlds that seem consistent with PA if you only look at proofs up to
length n. ConPA is a PA-valid deductive process.

2.5 Exploitation

Definition 2.19 (Worth function). The worth function Worth : W → R of a
trader t trading against a market P with deductive process D is a function that takes
in a pair (W,n) such that W ∈ Dn and computes the amount of money the trader
would have made up to and including day n, if all sentences were settled by W :

WorthP
t (W,n) :=

∑
i≤n

∑
φ∈Λ

ti(φ) · (W (φ)− Pi(φ)) .

ti(φ) · (W (φ)− Pi(φ)) is the profit of t from buying/selling shares of φ on day i,
where ti(φ) is the number of shares bought (if positive) or sold (if negative); W (φ)
is the payout (1 or 0) according to W ; and Pi(φ) is the price of φ-shares on day i.

Observe that a trader’s plausible worth might be positive even if they have only
bought and sold undecidable sentences. For example, if φ is undecidable and on day
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n the trader bought a share of φ at a price of 25 cents, then there is at least one
world where they have a plausible worth of 75 cents, and at least one world in which
they have a plausible worth of -25 cents.

Definition 2.20 (Exploitation). A trader t is said to exploit the market P relative

to the deductive process D if WorthP
t is bounded below but not above.

In colloquial terms, a trader exploits the market if they can attain unbounded returns
with only finite risk (according to the worlds that seemed plausible to the market
at the time). For example, if the prices of φ and ¬φ are both fixed at 40 cents
indefinitely, a trader can exploit the market by buying one share of each every day,
because then their maximum worth will be bounded below (eventually all worlds
with φ and ¬φ both false will be refuted) but not above (according to at least one
world, it goes up by 20 cents per day).

3 The logical induction criterion

Definition 3.1 (logical induction criterion). A market P is said to satisfy the
logical induction criterion with respect to a deductive process D if it cannot be
exploited by any trader t, i.e. if for all t ∈ T ,

WorthP
t bounded below⇒WorthP

t bounded above.

A market P which meets this criterion is called a logical inductor.

Theorem 3.1. There exists a computable reasoning process that implements a logical
inductor.

Proof. Deferred to section 5, where we give the algorithm.

4 Properties of Logical Inductors

Here is an intuitive argument that logical inductors perform good reasoning under
logical uncertainty:

Consider any polynomial-time method for identifying patterns in logic.
If the market prices don’t learn to reflect that pattern, there is a clever
trader who uses that pattern to exploit the market. Thus, a logical induc-
tor must identify all the varied patterns in logic that can be expressed as
relationships between prices, and start making the market prices reflect
those relationships.

Furthermore, foolish traders lose their money quickly, while brilliant
traders make a fortune and can have a higher trading volume. The prices
that clear the market will therefore pay more attention to the brilliant
traders. Thus, logical inductors learn inductively which sorts of patterns
to pay more attention to, by listening more to traders that identified
patterns well in the past.

We will now provide evidence for this intuitive argument, by demonstrating a number
of desirable properties possessed by logical inductors. For example, we will show
that logical inductors learn, in a timely manner, to assign high probability to any
pattern of theorems that can be identified in polynomial time; and to use appropriate
statistical summaries on sequences that appear pseudorandom; and to know their
current beliefs; and to trust their future beliefs.

Our goal is to show that logical inductors recognize many different types of
patterns inductively, and that they manage their uncertainty in a reasonable fashion,
like any good inductive process. Of course, the uncertainty of a logical inductor
stems from a lack of logical knowledge and computational resources, rather than
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a lack of empirical information. Logical inductors therefore give a theory of how
to inductively learning to predict the behavior of long-running programs from the
observation of shorter-running ones, and so on.

We will prove some of the theorems below, but we defer a number of proofs to
the extended version of this paper.

In what follows, P will always denote a computable reasoning process which
implements a logical inductor relative to an associated Γ-valid deductive process D.

4.1 Limit properties

The most basic properties of logical inductors is that their beliefs always converge
to a coherent probability distirbution.

Theorem 4.1 (Covergence). The limit P∞ : Λ→ [0, 1] defined by

P∞(φ) := lim
n→∞

Pn(φ)

exists for all φ.

Proof. Deferred to Section 6.1.

Theorem 4.2 (Limit Coherence). P∞ is coherent, i.e., it gives rise to an internally
consistent probability measure P on the set D∞ of all worlds consistent with Γ,
defined by the formula

P(W (φ) = 1) := P∞(φ).

In other words, P∞ is a probability measure on the set of completions of Γ.

Proof. Deferred to Section 6.2.

The limiting belief-state is non-dogmatic, in the sense that it assigns non-extreme
probabilities to all undecidable sentences. In fact, the limiting probability of an
undecidable sentence is bounded away from 0 and 1 by an amount proportional to
its Kolmogorov complexity.

Theorem 4.3 (Occam bounds). There exists a fixed positive constant C such that
for any sentence φ with Kolmogorov complexity κ(φ), if Γ 6 ` ¬φ, then

P∞(φ) ≥ C2−κ(φ),

and if Γ 6 ` φ, then
P∞(φ) ≤ 1− C2−κ(φ).

Proof. See the extended paper.

This means that a logical inductor can be used to do sequence prediction. A
finite bitstring like 00101 . . . can be encoded as a sentence ¬b1∧¬b2∧b3∧¬b4∧b5 . . .,
and if the (b1, b2, . . .) are not mentioned in the axioms of Γ, then a logical inductor
will assign this truth assignment a probability proportional to the Kolmogorov
complexity of the bitstring.

Theorem 4.4 (Domination of the Universal Semimeasure). Let (b1, b2, . . .) be a
sequence of zero-arity predicate symbols in the language of Γ not mentioned in the
axioms of Γ, and let σ be an infinite bitstring. Define

P∞(σ≤n) = P∞(“(b1 ↔ σ1 = 1) ∧ (b2 ↔ σ2 = 1) ∧ . . . ∧ (bn ↔ σn = 1)”).

Let M be a universal semimeasure. Then there is some constant C such that for
any finite bitstring σ≤n,

P∞(σ≤n) ≥ C ·M(σ≤n).

Proof. See the extended paper.
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4.2 Pattern recognition

Logical inductors learn a number of different patterns in a timely manner. For
example,

Theorem 4.5 (Provability Induction). If φφφ is a efficiently enumerable sequence of
provable sentences, then

Pn(φn) hn 1.

In other words, if φφφ is an e.e. sequence of theorems then P learns to assign high
probabilities to φφφ in a timely manner.

Proof. This is an immediate corollary of Theorem 4.7.

Consider an e.e. sequence φφφ of theorems which can be generated in polynomial time,
but are quite difficult to prove. Let f(n) be the time at which D will prove φn, and
assume that f is some fast-growing function. At any given time n, the statement φn
is ever further out beyond the current deductive state Dn—it might take 1 day to
prove φ0, 10 days to prove φ1, 100 days to prove φ2, and so on. One might therefore
expect that φn will also be “out of reach” for Pn, and that we have to wait until
a day close to f(n) before expecting the prices Pf(n)(φn) to be confident in φn.
However, this is not the case!

Provability induction says that, for large n and a sequence φφφ of theorems that
can be efficiently enumerated, Pn(φn) > 1− ε, despite the fact that φn will not be
confirmed deductively until a much later time f(n). In other words, P inductively
learns the pattern, and its prices for the φφφ become accurate faster than D can
computationally verify them.

Analogy: Ramanujan and Hardy. Imagine that the statements
φφφ are being output by an algorithm that uses heuristics to generate
mathematical facts without proofs, playing a role similar to the famously
brilliant, often-unrigorous mathematician Srinivas Ramanujan. Then P
plays the historical role of the beliefs of the rigorous G.H. Hardy who
tries to verify those results according to a slow deductive process. After
Hardy (P ) verifies enough of Ramanujan’s claims (φφφ≤n) according to
some slow deductive process (D), he begins to trust Ramanujan, even if
the proofs of Ramanujan’s later conjectures are impossibly long, putting
them ever-further beyond Hardy’s current abilities to rigorously verify
them. In this story, Hardy’s inductive reasoning (and Ramanujan’s also)
outpaces his deductive reasoning.

Similar theorems hold for sequences of contradictions (if ψψψ is an e.e. sequence of
contradictions, then P assigns probability 0 to ψψψ in a timely manner) and sequences
of undecidable sentences that converge to a single probability, and so on.

In fact, if the logical inductor is going to learn to assign probabilities p to φφφ
at any point in the future, then it learns to assign those probabilities in a timely
manner instead:

Theorem 4.6 (Timely adoption of bounds). Let φφφ be an e.e. sequence of sentences.
Then

lim inf
n→∞

Pn(φn) = lim inf
n→∞

sup
m≥n

Pm(φn).

Furthermore, the equation also holds with infimums and supremums swapped.

Proof. See the extended paper.

For example, consider the sequence

πAeq7 :=
(
“π[A(n, n)] = 7”

)
n∈N+

where π[i] is the ith decimal digit of π and A is the Ackermann function. Each
individual sentence is decidable, so the limiting probabilities are 0 for some πAeq7n
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and 1 for others. But that pattern of 1s and 0s is not efficiently enumerable (to say
the least). Theorem 4.6 says that even so, if P is going to eventually learn to assign
probability 10% to each πAeq7n while it waits to learn the Ackermann numbers,
then it learns to assign 10% probability to the sequence in a timely manner.

Furthermore, logical inductors do learn to assign probabilities like 10% to se-
quences like πAeq7. To formalize this claim, we need to formalize the idea that
a sequence is “apparently random” to a reasoner. Intuitively, this notion must be
defined relative to a specific reasoner and their computational limitations. After all,
the digits of π are perfectly deterministic; they only appear random to a reasoner
who lacks the resources to compute them.

Roughly speaking, what we will do is this. Given a sequence φφφ of decidable
e.e. statements, we will consider functions f that attempt to single out the true
statements in the sequence. In particular, we will consider only functions f that have
a runtime on the same order of complexity O(Pn) as the runtime of the algorithm
that produces the nth price table in P . We will use the shorthand O(f) = O(P )
to denote the claim that O(f(n)) = O(Pn) for all n. We will check the limiting
frequency with which they single out true φn successfully. If all of those functions
converge on the same limiting accuracy, then we will say that the sequence φφφ is
apparently random (with respect to O(P )), because no function can, in that runtime,
do better than guessing.

Definition 4.1 (O(P ) fuzzy subset). A fuzzy subset f : N+ → [0, 1] is a function
from natural numbers to [0, 1], such that

∑
n f(n) =∞. If O(f) = O(P ) as functions

of n, we say that f is practical relative to O(P ).

Definition 4.2 (p-pseoudorandom sequence). A efficiently enumerable sequence φφφ
of decidable sentences is called p-pseudorandom (with respect to O(P ) if, for all
practical fuzzy subsets f ,

lim
n→∞

∑
i<n f(i) · [Γ ` φi]∑

i<n f(i)

exists and is equal to p.

A few notes on these definitions, before proceeding. First, note that fuzzy
subsets have codomain [0, 1]. This is necessary for our proofs, because a trader can
implement a fuzzy subset, but not a true subset N+ → B (which is discontinuous).
For purposes of intuition, it is easiest to imagine functions that always output 0 or
1, in which case each f can be interpreted as saying “maybe this is an important
subset of φφφ to pay attention to”. The constraint that the f(n) sum to ∞ ensures
that each f is talking about a pattern of the whole sequence, as opposed to just
deciding a finite initial sequence of φφφ and picking out the true ones precisely.

Theorem 4.7 (Learning pseudorandom frequencies). Let φφφ be an e.e. sequence of
Γ-decidable sentences which is p-pseudorandom over O(P ). Then

Pn(φn) hn p.

Proof. Deferred to Section 6.3.

This shows that logical inductors learn the right statistical summaries on sequences
that are apparently pseudorandom relative to O(P ). Note that it doesn’t rule out
P recognizing a pattern on sequences that are apparently pseudorandom relative to
polytime; the market is allowed to be smarter than the sum of its parts.

Furthermore, logical inductors learn, in a timely manner, to make their probabil-
ities respect linear inequalities that will hold between the truth value in the limit.
For example, consider a computer program prg which outputs either 0, 1, or 2 on
all inputs, but for which the general case cannot be proven by Γ. Theorem 4.5 says
that the sequence

prg012 :=
(
“prg(n) = 0 ∨ prg(n) = 1 ∨ prg(n) = 2”

)
n∈N+
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will be learned, in the sense that P will inductively learn to assign each prg012n a
probability near 1 in a timely manner. But what about the following three individual
sequences?

prg0 :=
(
“prg(n) = 0”

)
n∈N+

prg1 :=
(
“prg(n) = 1”

)
n∈N+

prg2 :=
(
“prg(n) = 2”

)
n∈N+

None of the three are purely theorems, so Theorem 4.5 does not apply. If they
are utterly unpredictable in O(P ), then Theorem 4.7 says that P will fall back on
the limiting frequencies, but that tells us little in cases where there are predictable
non-conclusive patterns (e.g., if prg(i) is more likely to output 2 when helper(i)
outputs 17). In fact, the probabilities on the (prg0n,prg1n,prg2n) triplet should
shift around over time, as P gains new knowledge about related facts and updates
its beliefs. How could we tell if those intermediate beliefs were reasonable?

One way is to check their sum. If P believes that prg(i) ∈ {0, 1, 2} and it knows
how disjunction works, then it should be the case that whenever Pn(prg012t) ≈ 1,
Pn(prg0t) + Pn(prg1t) + Pn(prg2t) ≈ 1. And this is precisely the case.

Definition 4.3 (Affine features). A k-arity affine feature AF : [0, 1]Λ → R is
an affine function of k sentences such that

AF(T ) = α0 +

k∑
i=1

αiT (φi)

where the αi are market features and the φi are sentences.

For instance, we can declare (by convention) that an affine AF feature is “satisfied”
by a world W if AF(W ) ≥ 0. Then the above example can be encoded as the two
affine features

1− T (prg0t)− T (prg1t)− T (prg2t)

T (prg0t) + T (prg1t) + T (prg2t)− 1

where any world that satisfies both (by sending both to a number ≥ 0) is one in
which exactly one of the sentences is true, and any price table Pn which satisfies
both is one for which Pn(prg0t) + Pn(prg1t) + Pn(prg2t). We can show that logical
inductors learn, in a timely manner, to make their probabilities satisfy any affine
feature that holds in fact.

We call a sequence of affine features AF “bounded” if there is some bound b

such that for all n,
∑k
i=0 |αki | ≤ b.

Theorem 4.8 (Affine coherence).

lim inf
n→∞

AFn(Pn) ≥ lim inf
n→∞

AFn(P∞) ≥ lim inf
n→∞

inf
W∈D∞

AFn(W )

and
lim sup
n→∞

AFn(Pn) ≤ lim sup
n→∞

AFn(P∞) ≤ lim sup
n→∞

sup
W∈D∞

AFn(W )

Proof. See the extended paper.

These inequalities connect truth in consistent worlds (the extrema to which consistent
worlds send the affine feature) to the behavior in the limit (which is a weighted
average of all consistent worlds) to the behavior on the main diagonal (which assigns
probabilities that put all e.e. sequences of affine features into the right range in a
timely manner).
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This doesn’t mean that P will solve difficult constraint satisfaction problems
in a timely manner, it just means P ’s probabilities will start respecting all linear
inequalities in a timely manner. For example, if a set of complex constraints holds
between seven sequences of sentences, such that exactly three elements of each
septuplet are true, but it’s difficult to figure out which three. Then P will learn this
pattern, and start ensuring that its probabilities on each seven-tuple sum to 3, even
if it can’t yet assign particularly high probabilities to the correct three.

If we watch an individual seven-tuple as P reasons, other constraints will push
the probabilities on those seven sentences up and down. One sentence might be
refuted and have its probability go to zero. Another might get a boost when P
discovers that it’s implied by a high-probability sentence. Another might take a
hit when P discovers it might imply a low-probability sentence. Throughout all
this, theorem 4.8 says that P will ensure that the seven probabilities always sum to
≈ 3. P ’s beliefs on any given day arise from this interplay of theorem recognition,
statistical pattern recognition, and the satisfaction of many different constraints,
inductively learned.

In the extended version of this paper, we prove stronger and more general versions
of all the above results.

4.3 Self-knowledge

Logical inductors also learn to know what they know, and trust their future beliefs,
in a way that avoids paradox. For starters,

Theorem 4.9 (Introspection). Let φφφ be an efficiently enumerable sequence of
sentences, a and b be efficiently enumerable sequences of probabilities, and δδδ be an
efficiently enumerable sequence of positive real numbers. Define the sequence

ψψψ :=
(

“an < Pn(φ
n
) < bn”

)
n∈N+

of sentences that say “the probability of φn on day n is in the interval (an, bn)”. Note
that ψψψ is e.e. (Pn need not be evaluated to produce ψn, it just needs to be written
down). Then, for every ε > 0, the following two implications hold for all sufficiently
large n:

1. if Pn(φn) ∈ (an + δn, bn − δn), then Pn(ψn) > 1− ε.

2. if Pn /∈ (an − δn, bn + δn), then Pn(ψn) < ε.

Proof. See the extended paper.

Roughly speaking, this says that if there is an e.e. pattern of the form “your
probabilities on these sorts of sentences will be between (a, b)” then P will learn to
believe that pattern iff it is true, subject to the caveat that its self-knowledge has
only finite precision (i.e., if its beliefs are extremely close to a then it can’t always
tell which side of a they are on).

This “finite-precision self-knowledge” allows logical inductors to avoid the classic
paradoxes of self-reference:

Theorem 4.10 (Liar’s paradox resistance). Fix a rational p ∈ (0, 1), and define a
sequence of “liar sentences” Lp satisfying

Γ ` Lpn ↔
(
Pn(Lpn) < p

)
for all n. (This can be done using, e.g., Gödel’s diagonal lemma.) Then

lim
n→∞

Pn(Lpn) = p.

Proof. See the extended paper.
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A logical inductor responds to liar sentences Lp by assigning probabilities that
converge on p. For example, if the liars sentences say “P will assign me a probability
less than 80% on day n”, then Pn (once P has learned the pattern) starts assigning
probabilities extremely close to 80%—so close that polynomial-runtime traders can’t
tell if it’s slightly above or slightly below.

To visualize this, imagine that someone who owns a high-precision brain-scanner
and can read off your beliefs, asks you what probability you assign to the claim “you
will assign probability <80% to this claim at precisely 10am tomorrow”. As 10am
approaches, what happens to your belief in this claim? If you become extremely
confident that it’s going to be true, then your confidence should drop. But if you
become highly confident it’s going to be false, then your confidence should spike.
Thus, your probabilities should oscillate, pushing your belief so close to 80% that
you’re not quite sure which way the brain scanner will actually call it. In response
to a liar’s paradox, this is exactly how a logical inductor behaves, once it’s learned
how liar sentences work.

To go further, we need to define expected values taken with respect to P , which
we do as follows.

Definition 4.4 (Logically uncertain variable). A [0, 1]-valued logically uncertain
variable (LUV) is a sentence X with one free variable ν such that Γ proves it
uniquely pins down exactly one real number in the interval [0, 1]:

Γ ` ∃!x ∈ [0, 1] : X(x),

where X(x) denotes X with y substituted in for ν. The value x ∈ [0, 1] that makes
X(x) true is called the value of X.

For example, H := “ν = 0.5” is a LUV. As another example, TPC := “(ν =
1 ∧ Goldbach’s conjecture) ∨ (ν = 0 ∧ ¬Goldbach’s conjecture)” is a LUV whose
value is somewhat more difficult to determine. The quantity P (“X(0.5)”) plays the
role that P(X = 0.5) would play for probability distributions and traditional random
variables. For the purpose of writing expressions like P (X = x), P (X > 0.2), and
P (2X + 3Y < Z), we declare that P (X = 0.5) is shorthand for P (“∀x : X(x)→ x =
0.5”), and that, in general, any relationship

∀xy . . . z : X(x) ∧ Y (y) ∧ . . . ∧ Z(z)→ R(x, y, . . . , z)

can be abbreviated R(X,Y, . . . , Z). For example,

• P (X > 0.2) stands for P (“∀x : X(x)→ x > 0.2) ”.

• P (2X + 3Y < Z) stands for P (“∀xyz : X(x) ∧ Y (y) ∧ Z(z)→ 2x+ 3y < z”).

We can now define expectations of LUVs with respect to a given price table.
The first impulse is to use a Riemann sum; this is unsatisfactory, because if P has
not yet figured out that a LUV X has a unique value, then it might assign high
probability to X being in multiple different places in the [0, 1] interval, in which
case the Riemann sum would not be in [0, 1]. So instead, we define expectations
using an analog of a cumulative density function:

Definition 4.5 (Expectations). For a given logical inductor P , we define the

approximate expectation operator EPnk for Pn with precision k by

EPnk (X) :=

k−1∑
i=0

1

k
Pn

(
X >

i

k

)
.

This has the desirable property that EPnk (X) ∈ [0, 1]. Observe that E(·)
k is an affine

feature with coefficients 1/k and sentences “X > i/k”.

We will often want to take a limit of EPnk (X) as both k and n approach ∞. We
hereby make the fairly arbitrary choice to focus on the case k = n for simplicity,
adopting the shorthand

En := EPnn
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Observe that when n is finite, En can be interpreted as a market n-feature. Observe
that each LUV X has a unique value in every consistent world, which means that
each X is a random variable (in the traditional sense) in the limit distribution P∞,
and that E∞ is the usual expectation operator over P∞, where E∞(X) is a mixture
of the value of X in each consistent world (weighted according to P∞).

It is easy to show that expectations work as expected, for example:

Theorem 4.11 (Linearity of expectation). Let ααα and βββ be efficiently enumerable
bounded sequences of n-market features. Let X,Y , and Z be efficiently enumerable
sequences of LUVs. If for all n, Zn = αnXn + βnYn, then

αnEn(Xn) + βnEn(Yn) hn En(Zn).

Proof. See the extended paper.

Many other properties of the expectation operator are discussed in the extended
version.

We can now show that logical inductors trust their future beliefs.

Theorem 4.12 (Conservation of Expected Updates). Let f : N+ → N+ be a
function with runtime polynomial in f(n), such that f(n) > n. Let φφφ denote an e.e.
sequence of sentences.

Pn(φn) hn En(Pf(n)(φn)).

where En(Pf(n)(φn)) is shorthand for En(Xn) and Xn is the LUV “ν = P f(n)(φn)”.

Proof. See the extended paper.

Roughly speaking, this says that if P on day n believes that on day f(n) it will
believe φn with high probability, then it already believes φn with high probability
today. In other words, logical inductors learn to adopt their predicted future beliefs
as their current beliefs in a timely manner—they don’t say “tomorrow I expect to
believe that φ is true, but today I think it’s false”.

We will also show that, roughly speaking, logical inductors trust that if their
beliefs change, then they must have changed for good reasons. To do this, we first
define:

[φ] := “(ν = 1 ∧ φ) ∨ (ν = 0 ∧ φ)”,

so that [φ] is the LUV with the value 1 if φ is true and false otherwise; and

[x ≥ p]δ := “ν =


0 if x < p(
x− p

)
/δ if p ≤ x ≤ p+ δ

1 if p+ δ < x.

 ”

so that [x ≥ p]δ is a LUV with the value 0 if x < p, 1 if x > p+ δ, and intermediate
in between. Then

Theorem 4.13 (Self trust). Let φφφ be an e.e. sequence of sentences. Let δδδ be an e.e.
sequence of positive rational numbers converging to zero. Let p be an e.e. sequence
of rational probabilities. Then

En
(
[φn] · [Pf(n) (φn) ≥ pn]δn

)
&n pn · En

(
[Pf(n) (φn) ≥ pn]δn

)
.

Proof. See the extended paper.

Roughly speaking, this says that if you ask P on day n for its belief in φ, conditional
on it believing on day f(n) that φ has probability p, it will answer with a probability
at least p, regardless of whether or not its unconditional probability on p on day n
is lower than p. In colloquial terms, conditional on its future beliefs changing, it
expects them to have changed for good reasons.
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Notice that [Pf(n) (φn) ≥ pn]δn is a continuous indicator on P ’s future beliefs,
which can be interpreted as saying that theorem 4.13 only holds when P has finite-
precision access to its future beliefs. Indeed, theorem 4.13 breaks down if P gets
infinite-precision access to its future beliefs, and this is quite desirable. For example,
let each φn be the liar sentence “P f(n)(φn) < 0.5” which says that the future

Pf(n) will assign probability less than 0.5 to the sentence. Then, conditional on
Pf(n)(φn) ≥ 0.5, Pn should believe that the probability of φn is 0. And indeed, this
is what a logical inductor will do:

Pn(“φ
n
∧ (P f(n)(φn) ≥ 0.5)”) hn 0,

by a trivial application of theorem 4.7 (the limiting frequency of this sequence is 0,
because each sentence is disprovable). This is why theorem 4.13 uses expectations
and fuzzy indicator functions: with discrete conjunctions, the result would be
undesirable (and false).

Roughly speaking, theorem 4.13 says is that P attains self trust of the “if in the
future I will believe x is very likely, then it must be because x is very likely” variety,
if the conditional gives finite-precision access to its future beliefs. Simultaneously,
P retains the ability to think it can outperform its future self’s beliefs given infinite-
precision access to them. If you ask “what’s your probability on the liar sentence
φn given that your future self believes it with probability exactly 0.5?” then P will
answer “very low”, but if you ask “what’s your probability on the liar sentence φn
given that your future self believes it with probability extremely close to 0.5?” then
P will answer “roughly 0.5.”

In the extended version of this paper, we prove generalized versions of the above
results, and discuss a number of other subjects (such as calibration and conditional
probabilities) in some depth.

5 Construction

We now give a computable algorithm for constructing a logical inductor.

5.1 Proof sketch

Imagine a reasoner writing out price tables at a rate of one per day, with the
knowledge that those prices are going to be used to run a market full of polynomial
time traders, and that they will be obligated to buy and sell arbitrarily many shares
at the listed prices. If they can produce a sequence of price tables that satisfy the
logical induction criterion, then the resulting prices, interpreted as beliefs about
logic, will have the desirable properties listed above.

Our algorithm for doing this is easier to visualize if we begin with a finite case.
First, notice that if there is a trader that exploits a market, then there is another
trader that exploits the market while having their plausible worth bounded below
by -1 (simply scale down the trades of the first trader). Thus, in the finite setting,
the reasoner can take all traders, give them each $1, and act as follows each day.
First, run all traders to get their trade strategies. Second, cut their trades off if they
go over-budget. Third, combine all the strategies into a single net trading strategy,
which is a continuous function from the day’s prices to a net trade, where the net
trade lists the net volume on all (finitely many) sentences that some trader might
buy/sell shares on that day.

Now what the reasoner can do is search for a price table that causes the net
trade to be zero everywhere (or possibly causes net buy orders for shares priced at 1,
or net sell orders for shares priced at 0). We will show that this can be done using
Brouwer’s fixed point theorem. If the net trade is zero everywhere, then for every
share of φ bought by one trader, there’s a share of φ sold by other traders, and the
money in the system always gets shuffled around between traders, so the reasoner
never puts any of their own money in. If the net trade purchases shares at price 1
or sells at price 0, no money flows into the system. The prices that make the net
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trades literally zero can be difficult to find, so we will have the reasoner approximate
those prices to within ε; the reasoner will cut ε in half each day, such that they only
ever have to put in at most $1 into their own market. Because the market starts
with a finite amount of money (one dollar per trader for finitely many traders), and
only a finite amount of money is ever added, the plausible worth of every individual
trader must remain finite.

The situation gets a bit more complicated in the infinite case; we will do the
following. The reasoner will take one additional trader under consideration each day.
They will spread out a single dollar among all the traders, in a way that ensures that
the nth trader has at most 2−n wealth by the time they enter consideration. (This
will entail giving the nth trader less than 2−n to start, and setting aside a portion
of the first dollar to cover trades that the nth trader makes before it is taken under
consideration). Then, each day, they will find a price table that causes the net trade
volume among all considered traders to be twice as close to zero as it was the day
before. Thus, the market starts with a finite amount of money in it, and the market
will only ever have a finite amount of money added to it, so the plausible wealth of
every individual trader will be bounded above.

5.2 Proxy Traders

Fix an enumeration (t1, t2, . . .) of all traders. We begin by showing how to take
the ith trader and construct a proxy trader that (1) has their trades cut off if a
trade would cause their plausible worth to dip below −2−i and (2) has their trading
strategy scaled down so much that, on day i, their plausible worth is at most 2−i.

For each ti, we define the sequence of market features αααi recursively as follows.
Each αin takes a market history P≤n as input and computes the maximum value in
[0, 1] such that, for all W ∈ Dn,∑

j≤n

∑
φ∈Λ

(
αij(P≤j) · tij(φ)(P≤j)

)
(W (φ)− Pj(φ)) ≥ −1.

Intuitively, αin calculates the amount to scale tin down to ensure that ti’s minimum
worth on day n doesn’t dip below −1, according to any world W which is still
plausible to D on day n, and assuming that ti<n were scaled by αααi<n.

Observe that each αin is computable, because each tij is non-zero on only finitely
many sentences, so only finitely many combinations of truth values to those sentences
need to be checked. (Recall that PlausibleDn can be used to check whether a certain
truth assignment remains plausible, and that it is computable.) However, the
sequence αααi cannot necessarily be generated in polynomial time.

Next, for each ti, define

βi(P<i) :=
2−i

max
(

1,
∑
j<i α

i
j(P≤j) · |tij(P≤j)|

)
Multiplying all of ti’s trades by βi has two effects. First, it scales all trades down by
a factor of at least 2i, ensuring that the plausible worth of the ith trader never dips
below −2−i. Second, notice that the denominator is the total trade volume of the
ith trader before day i (or 1, whichever is greater). Thus, multiplying every trade
by βi ensures that the worth of the trader on the ith day is at most 2−i, according
to any world W ∈ Di.

Now, given a sequence of price tables P = (P1, P2, . . .) we can define a proxy
trader xi for each trader ti:

xin(φ)(P≤n) := βi(P<i) · αin(P≤n) · tin(φ)(P≤n).

Observe that xi has the type of a trader, but is not a trader itself. Firstly, because
P<i must be known before xin can be computed, even if n� i; and secondly, because
αααi is not efficiently enumerable.
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Note that
inf

(W,n)∈W
WorthP

xi(W,n) ≥ −2−i, (1)

and
sup
W∈Di

WorthP
xi(W, i) ≤ 2−i, (2)

which say that xi never has its plausible worth dip below 2−i (according to any
then-plausible worlds), and that the maximum plausible worth of xi on day i is 2−i.

Observe that if there exists a trader ti that exploits P , then there also exists a
proxy trader xj (not necessarily xi) that exploits P , by executing equivalent trades
scaled down so far that equations (1) and (2) hold with αin = 1 for all n. Thus,
it suffices to define a market P that cannot be exploited by any proxy trader xk.
Because equation (1) says that the plausible worth of every proxy trader is bounded
below in any market, it suffices to construct a market P such that the plausible
total worth of all proxy traders xk together is bounded above.

5.3 The Algorithm

We will use the following lemma to define P :

Lemma 1 (Existence of clearing prices). For any ε > 0, any finite Λ′ ⊆ Λ, and

any continuous function NetTrades : [0, 1]Λ
′ → RΛ′ , there exists a price table P with

support Λ′, such that for all W ′ ∈ Λ′ → B,∑
φ∈Λ′

NetTradesP (φ) · (W ′(φ)− P (φ)) < ε.

Define Pn recursively from P<n to be a finite-support price table such that for all
W ∈ Dn, ∑

φ∈Λ

∑
i≤n

xin(φ)(P≤n) · (W (φ)− Pn(φ)) < 2−n. (3)

Lemma 1 says that such a point exists, by taking NetTradesP (φ) to be the net trade
volume

∑
i≤n x

i
n(φ)(P<n, P ), and ε = 2−n, and Λ′ to be the (finite) set of sentences

for which some xin(φ) 6= 0 for i ≤ n.
Pn can be computed by enumerating all (rational) price tables that are zero

everywhere except for Λ′ until finding one that satisfies (3), because the left-hand
side of the inequality is computable.4

5.4 Proof of the Logical Inductor Criterion

We recall Theorem 3.1:

Theorem 3.1. There exists a computable reasoning process that implements a logical
inductor.

Proof. Consider P as defined by equation (3). Observe that it is computable, and
that it is a reasoning process (because each Pn has finite support). It remains to
show that it is a logical inductor. By the definition of proxy traders, it suffices to
show that WorthP

xk is bounded above for all k. We will show that the plausible total
worth of all proxy traders xk together is bounded above by 3.

Notice that, on any day j, according to all worlds W ∈ Dj ,∑
i>j

∑
φ∈Λ

xij(φ) · (W (φ)− Pj(φ)) ≤
∑
i>j

2−i = 2−j , (4)

4. Clearly, this algorithm is designed for ease of proof, not for practicality.
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by equation (2) and the fact that D is decreasing. This says all W ∈ Dj agree that
the reasoner will need to pay at most 2−j in total to {xi | i > j} for trades executed
on the jth day. Additionally,∑

i≤j

∑
φ∈Λ

xij(φ) · (W (φ)− Pj(φ)) < 2−j ,

by equation (3), which says that all W ∈ Dj agree that the reasoner will need to pay
at most 2−j to {xi | i ≤ j} for trades executed on the jth day. Combining these, we
get ∑

i∈N+

∑
φ∈Λ

xij(φ) · (W (φ)− Pj(φ)) < 21−j .

On each day n, summing over days j ≤ n, we get that for all W ∈ Dn,∑
j≤n

∑
i∈N+

∑
φ∈Λ

xij(φ) · (W (φ)− Pj(φ)) <
∑
j≤n

21−j < 2, (5)

i.e., it is always the case that every plausible world agrees that the reasoner won’t
ever need to pay out more than $2 to the proxy traders in aggregate.

For any k and (W,n) ∈ W,∑
i 6=k

∑
j≤n

∑
φ∈Λ

xij(φ) · (W (φ)− Pj(φ)) ≥
∑
i6=k

−2−i > −1, (6)

by equation (1). This says that the set of all proxy traders except xk have lost no
more than $1 in total. Combining (5) and (6), we see that for all k and (W,n) ∈ W ,∑

j≤n

∑
φ∈Λ

xkj (φ) · (W (φ)− Pj(φ)) < 3,

i.e., every plausible world always agrees that no proxy trader has a worth ≥ 3. Thus,
WorthP

xk is bounded above for all k.

5.5 Proof of Lemma 1

We recall Lemma 1:

Lemma 1 (Existence of clearing prices). For any ε > 0, any finite Λ′ ⊆ Λ, and

any continuous function NetTrades : [0, 1]Λ
′ → RΛ′ , there exists a price table P with

support Λ′, such that for all W ′ ∈ Λ′ → B,∑
φ∈Λ′

NetTradesP (φ) · (W ′(φ)− P (φ)) < ε.

Proof. Define Fix : [0, 1]Λ
′ → [0, 1]Λ

′
as follows:

Fix(Q′)(φ) := min{1,max{0, Q′(φ) + NetTradesQ
′
(φ)}}.

Fix can be interpreted as a function from the compact, convex space [0, 1]|Λ
′| to

itself. Thus it has a fixed point F ′, by Brouwer’s fixed point theorem.
For all φ ∈ Λ′, since F ′ is a fixed point, one of the following is true:

• NetTradesF
′
(φ) = 0

• NetTradesF
′
(φ) > 0 and F ′(φ) = 1

• NetTradesF
′
(φ) < 0 and F ′(φ) = 0
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It follows that NetTradesF
′
(φ) · (W ′(φ)−F ′(φ)) ≤ 0 for all φ ∈ Λ′ and W ′ : Λ′ → B.

F ′ is almost the price table we need, except that it is not necessarily rational.
However, ∑

φ∈Λ′

NetTradesQ
′
(φ) · (W ′(φ)−Q′(φ))

is continuous in Q′, so for any ε > 0 there is some rational P ′ : Λ′ → [0, 1] close
enough to F ′ such that for all W ′ : Λ′ → B,∑

φ∈Λ′

NetTradesP
′
(φ) · (W ′(φ)− P ′(φ)) < ε.

Define P (φ) to be P ′(φ) if φ ∈ Λ′ and 0 otherwise.

6 Selected proofs

In this section, we will prove theorems 4.1, 4.2, and 4.7. The remaining proofs (and
proofs of many other properties) can be found in the extended version of the paper.

It will be useful for describing continuous trading strategies to have a a “soft”
indicator function for events. We define a function Indδ( · > p) of a real number x
by

Indδ(x > p) :=


0 if x ≤ p
x− p
δ

if p < x ≤ p+ δ

1 if p+ δ < x.

This is the soft indicator function for the event x > p, which has value 0 off the event,
is linear within δ of the event, and 1 otherwise. Likewise, we define the continuous
indicator of x < p to be:

Indδ(x < p) =


1 if x ≤ p− δ
p− x
δ

if p− δ < x ≤ p

0 if p < x.

NB: the meaning of δ is different depending on the direction of the inequality:
Indδ(x > p) is linear (and increasing) on the interval [p, p+ δ], while Indδ(x < p) is
linear (and decreasing) on the interval [p− δ, p].

6.1 Convergence

Recall Theorem 4.1:

Theorem 4.1 (Covergence). The limit P∞ : Λ→ [0, 1] defined by

P∞(φ) := lim
n→∞

Pn(φ)

exists for all φ.

Proof of Theorem 4.1. Suppose by way of contradiction that the limit P∞ does not
exist. Then, for some sentence φ and some rational numbers p ∈ [0, 1] and ε > 0, we
have that Pn(φ) < p− ε infinitely often and Pn(φ) > p+ ε infinitely often. We will
show that P can be exploited, contrary to the logical induction criterion.

Roughly speaking, the trader will work as follows. Wait for a time step n on
which the market assigns a low price Pn(φ) < p − ε to the sentence φ. Since this
price is guaranteed to rise above p+ ε, simply buy a share in φ at time n, and then
sell back that φ-share when the price is high. Since the trader will then hold no net
shares in φ, their worth is not affected by whether or not φ is true. On the other
hand, they will have made a profit by buying low and selling high: they spent at
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most p− ε buying a φ-share, and then made at least p+ ε selling a φ-share. Since
the prices Pn(φ) fluctuate forever, they will continue making money forever and
thus exploit the market.

We will define a trader t that executes a strategy similar to this one, and hence
exploits the market P if limn→∞ Pn(φ) does not converge. To do this, there are
two technicalities we must deal with. First is that the strategy outlined above is a
discontinuous function of the market prices Pn(φ), and therefore is not permitted.
This is relatively easy to fix using soft indicator functions described above.

The second technicality is more subtle. Suppose we define our trader to buy
φ-shares whenever their price Pn(φ) is low, and sell them back whenever their price
is high. Then it is possible that the trader makes the following trades in sequence
against the market P : buy 10 φ-shares on consecutive days, then sell 10 φ-shares;
then buy 100 φ-shares consecutively, and then sell them off; then buy 1000 φ-shares,
then sell them off; and so on. Although this trader makes profit on each batch, it
always spends more on the next batch, taking larger and larger risks (relative to
the remaining plausible worlds). In short, this trader is not tracking its budget,
and so may have unboundedly negative Worth. We will fix this problem by having
our trader t track how many net φ-shares it has bought, and not buying too many,
thereby maintaining bounded risk. This will be sufficient to prove the theorem.

Definition of the trader t Let the quantity

Sharesφn :=
∑
i<n

ti(φ)

denote the total net number of φ-shares that t has purchased before the current
time n. Now we define the trader t to output the trading strategy tn on time n
defined by

tn(φ) := (1− Sharesφn)× Indε/2(Pn(φ) < p− ε/2)

− Sharesφn × Indε/2(Pn(φ) > p+ ε/2),

and tn(γ) := 0 for other sentences γ 6= φ. Note that tn is computable with runtime
polynomial in n. Furthermore, the trading strategies tn assign a single market
n-feature to φ, as required; thus t is a well-defined trader.5

In words, t buys some φ-shares whenever Pn(φ) < p− ε/2, up to 1 share when
Pn(φ) < p − ε; and sells some φ-shares whenever Pn(φ) > p + ε/2, up to 1 share

when Pn(φ) > p+ ε. These trades are scaled down according to the number Sharesφn
of φ-shares t has bought in total. If t has bought a full φ-share to date that has not
been balanced out by selling a φ-share, then 1− Sharesφn = 0, so t will not buy any

more φ-shares; and Sharesφn = 1, so if given the opportunity t would sell up to a full
share in φ. Likewise, if t has bought 0 net shares in φ to date, then it will buy up
to 1 full φ-share if given the opportunity by a low market price Pn(φ), but will not
sell any shares in φ. Thus we have shown that for any time step n, our trader t has
purchased a net total of Sharesφn ∈ [0, 1] shares in φ.

Analyzing WorthP
t . We will now lower bound the Worth of t against the market

P over the deductive process D.
In words: we focus just on φ-shares, as t doesn’t trade on other sentences. As

time goes on, since Sharesφn ∈ [0, 1], t holds at most 1 net share in φ. Thus the
payouts and the costs from the surplus φ-shares held by t contribute little to the total
profit. If t has bought k/2 shares and sold k/2 shares in φ, then by the definition of
when t buys and sells, t has made a profit of a least (k/2)(p+ε/2−(p−ε/2)) = kε/2.
The payouts from those φ-shares cancel each other out.

5. Note that t is defined making reference to the values of its previous trades ti(φ). This
can be done efficiently in general, by computing t’s past trades inside t’s trading strategy
using dynamic programming. For details, see the extended paper.

21



Formally, for any time n and any world W ∈ Dn,

WorthP
t (W,n) :=

∑
i≤n

∑
ψ∈Λ

ti(ψ) · (W (ψ)− Pi(ψ))

=
∑
i≤n

ti(φ) · (W (φ)− Pi(φ))

since t only makes non-zero trades on φ;

=
(

Sharesφn+1 ·W (φ)
)
−
∑
i≤n

ti(φ) · Pi(φ)

since t holds Sharesφn-many net φ-shares;

≥ Sharesφn+1 · 0 +
∑
i≤n

Pi(φ)<p−ε/2

ti(φ) · (−Pi(φ))

+
∑
i≤n

Pi(φ)>1+ε/2

(−ti(φ)) · Pi(φ)

≥
∑
i≤n

Pi(φ)<p−ε/2

ti(φ) · (−(p− ε/2))

+
∑
i≤n

Pi(φ)>p+ε/2

(−ti(φ)) · (p+ ε/2)

since ti(φ) > 0 iff Pi(φ) < 1− ε/2, and ti(φ) < 0 iff Pi(φ) > 1 + ε/2;

=
∑
i≤n

|ti(φ)| · ε/2−
∑
i≤n

ti(φ) · p

=
∑
i≤n

|ti(φ)| · ε/2− Sharesφn+1 · p

≥ −p+
∑
i≤n

|ti(φ)| · ε/2.

Thus, the worth of t at time n is roughly ε/2 times the total trading volume |t≤n|
up until time n. In particular, WorthP

t is bounded below by −p. Futhermore, by
supposition, Pi(φ) < 1− ε and then Pj(φ) > 1 + ε for infinitely many i and infinitely
many j > i. But that means that infinitely often, our trader t will have purchased a
full φ-share (i.e. Sharesφn = 1), and then sold back a full φ-share (i.e. Sharesφn = 0),
and so on, making ε/2 profit each time.

That is, the sum
∑
i≤n |ti(φ)| diverges to∞ as n→∞. Thus t has worth against

P lower bounded but not upper bounded, and therefore exploits the market P . This
contradicts that P is a logical inductor; therefore, in fact the limit P∞(φ) must
exist.

6.2 Limit Coherence

Recall Theorem 4.2:

Theorem 4.2 (Limit Coherence). P∞ is coherent, i.e., it gives rise to an internally
consistent probability measure P on the set D∞ of all worlds consistent with Γ,
defined by the formula

P(W (φ) = 1) := P∞(φ).

In other words, P∞ is a probability measure on the set of completions of Γ.
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Proof of Theorem 4.2. By Convergence (Theorem 4.1), the limit P∞(φ) exists for
all sentences φ ∈ Λ. Therefore, P(W (φ) = 1) := P∞(φ) is well-defined as a function
of basic subsets of D∞.

Gaifman (1964) shows that P extends to a probability measure over D∞ so long
as the following three implications hold for all sentences φ an ψ:

• If Γ ` φ, then P∞(φ) = 1.

• If Γ ` ¬φ, then P∞(φ) = 0.

• If Γ ` ¬(φ ∧ ψ), then P∞(φ ∨ ψ) = P∞(φ) + P∞(ψ).

Since the three conditions are quite similar in form, we will prove them simultaneously
using three exemplar traders and parallel arguments.

Suppose for contradiction that one of these implications fails to hold by some
amount ε. For example, suppose that P∞(φ∨ψ) = P∞(φ) +P∞(ψ)−ε, even though
Γ proves that ¬(φ ∧ ψ). Intuitively, shares in φ ∨ ψ are underpriced by around ε. If
we wait for Pn to approximately converge, and then buy a (φ ∨ ψ)-share and sell a
φ-share and a ψ-share, we have made a profit of about ε. We will have to pay out
on at most one of the φ-share and the ψ-share, and if we do, we will also recieve a
payout from the (φ ∨ ψ)-share. In this way we can exploit the market P repeatedly,
for unbounded gains at no risk.

Definition of the traders tφ, tψ, tφ∨ψ≥, and tφ∨ψ≤. Suppose that one of the
three conditions is violated by ε, i.e.

• Γ ` φ, but P∞(φ) < 1− ε.
• Γ ` ¬φ, but P∞(φ) > ε.

• Γ ` ¬(φ ∧ ψ), but P∞(φ ∨ ψ) < P∞(φ) + P∞(ψ)− ε.
• Γ ` ¬(φ ∧ ψ), but P∞(φ ∨ ψ) > P∞(φ) + P∞(ψ) + ε.

Since the limit P∞ exists, there is some sufficiently large time sε such that for all
n > sε, the inequality holds for Pn; e.g., for all n > sε, Pn(φ∨ψ) > Pn(φ)+Pn(ψ)+ε.

Furthermore, since D is a Γ-valid deductive process, for some sufficiently large
sΓ and all n > sΓ, all worlds W in the deductive state Dn satisfy the appropriate
logical constraint on the sentences φ and ψ. For example, eventually all plausible
worlds assign 0 to φ if Γ ` ¬φ; and if Γ ` ¬(φ∧ψ), then eventually all worlds assign
1 to at most one of φ and ψ, and if either are assigned 1 then so is φ ∨ ψ.

Let s := max{sε, sΓ}. We now define traders that will exploit the market P .
All of the following traders will make no non-zero trades for n ≤ s, and will make
non-zero trades only for the sentences explicitly mentioned. For n > s, we define

tφn(φ) := 1

to be the trader tφ that attempts to ensure P∞(φ) = 1 by buying φ-shares;

t¬φn (φ) := −1

to be the trader t¬φ that attempts to ensure P∞(φ) = 0 by selling φ-shares;

tφ∨ψ≥n (φ) := −1

tφ∨ψ≥n (ψ) := −1

tφ∨ψ≥n (φ ∨ ψ) := 1

to be the trader tφ∨ψ≥ that attempts to ensure P∞(φ ∨ ψ) ≥ P∞(φ) + P∞(ψ); and

tφ∨ψ≤n (φ) := 1

tφ∨ψ≤n (ψ) := 1

tφ∨ψ≤n (φ ∨ ψ) := −1

to be the trader tφ∨ψ≤ that attempts to ensure P∞(φ∨ψ) ≤ P∞(φ)+P∞(ψ). These
traders all run in constant time; the constant s can be hard-coded at constant cost.
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Analyzing the worth of the traders. Consider the trader tφ that attempts to
ensure P∞(φ) = 1 by buying φ-shares. If in fact Γ ` φ, then we have, for any time
step n and any world W ∈ Dn plausible at time n:

WorthP
tφ(W,n) :=

∑
i≤n

∑
γ∈Λ

tφi (γ) · (W (γ)− Pi(γ))

=
∑
s<i≤n

tφi (φ) · (W (φ)− Pi(φ))

since tφ only makes non-zero trades on φ and after time s;

≥
∑
s<i≤n

1 · (1− (1− ε))

since by definition of s, W (φ) = 1 and Pi(φ) < 1− ε;

= ε(n− s).

In words, tφ spends at most 1− ε on a φ-share and immediately gets a pay out of 1,
for a net gain of at least ε.

The analysis for t¬φ is almost identical, so we will not belabor it; at every time
n > s, t¬φ sells a φ-share for at least ε, and if Γ ` ¬φ, then in every plausible world
that share is worthless and t¬φ has made a clear profit.

Now consider the trader tφ∨ψ≥ that attempts to ensure P∞(φ ∨ ψ) ≥ P∞(φ) +
P∞(ψ) by buying shares in φ ∨ ψ and selling φ-shares and ψ-shares. If in fact
Γ ` ¬(φ ∧ ψ), then we have, for any time step nand any world W ∈ Dn plausible at
time n:

WorthP
tφ∨ψ≥(W,n) :=

∑
i≤n

∑
γ∈Λ

tφ∨ψ≥i (γ) · (W (γ)− Pi(γ))

=
∑
s<i≤n

(
tφ∨ψ≥i (φ) · (W (φ)− Pi(φ))

+ tφ∨ψ≥i (ψ) · (W (ψ)− Pi(ψ))

+tφ∨ψ≥i (φ ∨ ψ) · (W (φ ∨ ψ)− Pi(φ ∨ ψ))
)

since tφ only makes non-zero trades on φ, ψ, and φ ∨ ψ, and only after time s;

=
∑
s<i≤n

(W (φ ∨ ψ)−W (φ)−W (ψ)

−Pi(φ ∨ ψ) + Pi(φ) + Pi(ψ))

≥
∑
s<i≤n

ε

= ε(n− s),

since W (φ ∨ ψ)−W (φ)−W (ψ) = 0 and by assumption on the prices Pi after time
s. The analysis for tφ∨ψ≤ is almost identical.

Exploiting the market P . The above analysis shows that for each of the traders
tφ, tψ, tφ∨ψ≥, and tφ∨ψ≤, if the condition on P∞ that they enforce is not satisfied,
then at every time step n their worth against P is ε(n− s). As n→∞, the worth of
such a trader is unbounded above, and is bounded below by 0. Thus, if P failed to
satisfy any of the coherence conditions, then the corresponding trader would exploit
P , contradicting that P is a logical inductor. Therefore P∞ is coherent.
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6.3 Learning Pseudorandom Frequencies

Recall Theorem 4.7:

Theorem 4.7 (Learning pseudorandom frequencies). Let φφφ be an e.e. sequence of
Γ-decidable sentences which is p-pseudorandom over O(P ). Then

Pn(φn) hn p.

Proof of Theorem 4.7. Assume the theorem did not hold. Then, intuitively, P
repeatedly underprices the φn. A trader can buy φn-shares whenever their price goes
below p− ε. By the assumption that the truth values of the φn are pseudorandom,
roughly p proportion of the shares will pay out. Since the trader only pay at most
p− ε per share, on average they make ε on each trade, so over time we exploit the
market.

We will have to make these trades continuous. Furthermore, as in the proof of
Theorem 4.1, we will need to budget our trader to prevent it from investing more
and more in sentences φn that may take a very long time to pay out.

Suppose for contradiction that φφφ is an e.e. sequence of Γ-decidable sentences
such that for every practical fuzzy subset f ,

lim
n→∞

∑
i<n f(i) · [Γ ` φi]∑

i<n f(i)
= p;

but nevertheless, for some ε > 0 and infinitely many n, we have (say)

Pn(φn) < p− ε.

(The argument for the case where Pn(φn) > p+ ε infinitely often will be the same,
mutatis mutandis, and one of these two cases must obtain.)

Definition of the trader t. Say that a sentence φ is settled at time n if every
world W ∈ Dn assigns the same value to φ. Because D is Γ-valid and every
φn is decidable, every φn is eventually settled. Since the deductive process D is
computable, there is a function S : Λ→ N+ → {0, 1}, computable in time polynomial
in n, that approximates the set of sentences by assigning 0 to settled sentences and
1 to possibly unsettled sentences. That is,

• for any φ and any n, if S(n, φ) = 0 then φ is settled at time n;
• for any φ and any m > n, if S(n, φ) = 0 then S(m,φ) = 0; and
• for any φ, for some sufficiently large n, S(n, φ) = 0.

Note that S may assign 1 to settled sentences (this allows S to be efficiently computed,
even if the deductive process D is not).

Our trader t will never have more than one share unsettled at any given time,
in order to avoid going into debt by purchasing ever more unsettled investments.
Formally, we define

βn := 1−
∑
i<n

S(φi, n)ti(φi)

to be the fraction of t’s budget of 1 that is not tied up in possibly unsettled φi-shares.
Then we define t at time n to be

tn(φn) := βn Indε/2(Pn(φn) < p− ε/2),

and tn(γ) := 0 for other sentences γ 6= φ. Note that this tn can be computed in
polynomial time in n, using S. 6 In words, tn uses some fraction of its free budget
βn to buy φn-shares, depending on to what extent they are priced below p− ε/2. In
particular, all the βn and all the tn(φ) are in [0, 1].

6. As mentioned in a previous footnote, t is defined using the values of its previous
trades ti(φ); this can be implemented efficiently.
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t is a practical fuzzy subset. Now we show that the sequence of trades tn(φn)
made by our trader t against the market P forms a practical fuzzy subset. Since t
is efficiently computable and tn(φn) ∈ [0, 1] for all n, it remains to show that∑

n

tn(φn) =∞.

That is, we want to show that tmades trades will unbounded total volume. Intuitively,
every trade that t makes is eventually settled according to S, after which point βn is
large again, and t continues buying φn-shares whenever Pn(φn) < p− ε/2. Formally,
suppose this were not the case, so that for some sufficiently large m,∑

n>m

tn(φn) < 1/2.

Then by definition of S, for some sufficiently large m′, S(φi,m
′) = 0 for all i ≤ m.

At that point, for any n > m′, we have

βn := 1−
∑
i<n

S(φi, n)ti(φi)

1−
∑

m′<i<n

S(φi, n)ti(φi)

≥ 1/2.

Then, by the earlier supposition on P , for some n > m′ we have Pn(φn) < p− ε, at
which point

tn(φn) := βn Indε/2 = (Pn(φn) < p− ε/2) ≥ 1/2.

This contradicts the supposition that
∑
n tn(φn) is bounded, so in fact the sum is

infinite as desired, i.e. t is a practical fuzzy subset.

Analyzing the worth of t. Now, by definition of φφφ being a pseudorandom
sequence, we have that

lim
n→∞

∑
i<n ti(φi) · [Γ ` φi]∑

i<n ti(φi)
= p.

Thus, for all sufficiently large n,∑
i<n

ti(φi) · [Γ ` φi] ≥ (p− ε/4)
∑
i<n

ti(φi).

The sum on the left is, roughly, the value of all the φi-shares held by t before time
n, and the sum on the right is the total number of shares purchased by t. Indeed,
at time n, all but at most 1 of the shares held by t has been settled, so there is a
discrepancy on the left hand side of at most 1.

By definition of t, the total price paid by t for its purchases before time n is at
most ∑

i<n

ti(φi)(p− ε/2).

Thus, the total worth of t against the market P before time n is at least

−1 + (p− ε/4− (p− ε/2))
∑
i<n

ti(φi) 'n (ε/4)
∑
i<n

ti(φi).

Thus WorthP
t (W,n) is bounded below. Further, since t makes trades of unbounded

volume, i.e.
∑
n tn(φn) = ∞, WorthP

t (W,n) grows unboundedly. Therefore t
exploits the market P . This contradicts that P is a logical inductor, so in fact we
must have that

lim
n→∞

Pn(φn) = p.

26



7 Discussion

We have proposed the logical induction criterion as a criterion for beliefs about
logical facts (represented explicitly as a series of price tables), and demonstrated that
logical inductors have many desirable properties when it comes to reasoning about
logical facts. For example, logical inductors learn (in a timely manner) to assign
probabilities near 1 to any sequence of theorems that can be produced in polynomial
time, which often requires outpacing the underlying deductive process. Similarly,
logical inductors learn to assign probabilities near 0 to all efficiently enumerable
sequences of contradictions, and they learn to assign probabilities that respect linear
inequalities that will hold in the limit (such as ensuring that the probabilities of
“prg(i)=0” and “prg(i)=1” sum to no more than 1, and so on), and they learn to
fall back on appropriate statistical summaries in the face of pseudorandom sequences.
They also learn to know their current beliefs and trust their future beliefs, and their
beliefs are fully coherent in the limit.

We have presented a computable algorithm that demonstrates that it is possible
to meet the logical induction criterion. Clearly, the algorithm presented in Section 5
is not intended for practical use. On the contrary, logical induction is intended to
serve as a theoretical account of how to learn inductively to predict unknown logical
facts (such as the behavior of a long-running computer program) from known ones
(such as the observation of shorter-running computer programs). In this way, it is
analogous to Solomonoff’s theory of inductive inference (Solomonoff 1964), which
provides a theoretical account of how to use Bayesian probability theory to learn
inductively to predict unknown empirical facts (the next observation that will be
produced by an environment) from known ones (the history of observations produced
by the environment).

As an analogy, in the field of artificial intelligence (AI), Bayesian probability
theory has provided inspiration for a wide array of AI algorithms, from Belief
Propagation (Pearl 1988) to Auto-Encoding Variational Bayes (Kingma and Welling
2013). Indeed, while perfect Bayesian reasoning is intractable in practice, the idiom
of representing beliefs with probabilities and responding to evidence in an approxi-
mately Bayesian fashion is ubiquitous throughout the field of AI. Similarly, while
Solomonoff’s theory of inductive inference is uncomputable, the idea of consulting a
set of experts, rewarding them for predicting the data well, and penalizing them for
complexity, is a ubiquitous idiom for predictive analytics. Logical induction aspires
to provide an analogous theoretical foundation for algorithms that are predicting
logical facts (such as the behavior of computations that are too expensive to run).

The authors are particularly interested in tools that help AI scientists attain
novel robustness and reliability guarantees in settings where statistical guarantees
are currently hard to come by. This includes settings where AI systems have to
reason about computations that are too expensive to run, as discussed by Fallenstein
and Soares (2015), and also settings where AI systems have to reason about other
agents that are logically uncertain. For example, consider an AI system attempting
to learn a human’s goals, and imagine it observing the human make a losing chess
move. Such a system should not conclude that the human wanted to lose; it should
instead have a model of the human being logically uncertain, with beliefs constrained
by deductive limitations. (For further discussion on this topic, refer to Russell [2014]
and Li et al. [2010].) In settings such as these, we expect logical induction to help
by providing an early theoretical framework for studying deductively limited (but
otherwise rational) reasoners.

The authors believe that the logical induction criterion captures a sizable portion
of what it means to manage uncertainty well in the face of deductive limitations, in
the same way that the “no Dutch book” criteria of Ramsey (1931) and de Finetti
(1979) capture a sizable portion of what it means to manage uncertainty well in the
face of empirical uncertainty. Roughly speaking, logical inductors learn to recognize
all patterns that can be found in polynomial time; and any reasoning process that
does not satisfy the logical inductor criterion can (by definition) be exploited by
some stock trader that runs in polynomial time.

Nevertheless, logical induction leaves a number of questions wide open. For

27



example, logical induction does not obviously give good answers to questions about
counterpossibles, such as “what would math be like if Fermat’s last theorem were
false?” While these questions may seem ridiculous at first glance, they are important
when it comes to developing a decision theory that is suitable for deductively
limited reasoners, where one may want to ask “what will happen in the world if
agent(n)=action3?” and have some confidence that the answer will be reasonable
even if agent(n) does not in fact equal action3.

Finally, there is the question of whether logical inductors behave well in practice.
One key insight of the algorithm in Section 5 is that it is possible for a limited
reasoner to construct reasonable beliefs about logical facts by consulting a collection
of “stock traders”, where each trader watches for (and attempts to profit from) a
certain type of price inefficiency when the beliefs are interpreted as a price table.
“Reasonable” beliefs (relative to a collection of traders) are then any prices that make
the market clear. The authors expect that algorithms which use these ideas—i.e.,
by reasoning about a limited set of logical facts, running a finite collection of linear-
time traders, and using standard gradient descent techniques to find approximately
reasonable prices—can likely achieve good performance in practice. This is an
empirical conjecture, which remains to be tested.
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Chap. 10 in Computability: Turing, Gödel, Church, and Beyond, edited by B. Jack
Copeland, Carl J. Posy, and Oron Shagrir, 261–328. Cambridge: MIT Press.

Campbell-Moore, Catrin. 2015. “How to Express Self-Referential Probability. A Kripkean
Proposal.” The Review of Symbolic Logic 8 (04): 680–704.

Carnap, Rudolf. 1962. Logical Foundations of Probability. Chicago, IL, USA: University of
Chicago Press.

Christiano, Paul. 2014. Non-Omniscience, Probabilistic Inference, and Metamathematics.
Technical report 2014–3. Berkeley, CA: Machine Intelligence Research Institute. http:
//intelligence.org/files/Non-Omniscience.pdf.

De Finetti, Bruno. 1979. Theory of Probability. New York, NY, USA: John Wiley & Sons.

Demski, Abram. 2012. “Logical Prior Probability.” In Artificial General Intelligence: 5th
International Conference, AGI 2012, 50–59. Lecture Notes in Artificial Intelligence 7716.
New York: Springer.

Fagin, Ronald, Yoram Moses, Moshe Y. Vardi, and Joseph Y. Halpern. 1995. Reasoning
About Knowledge. Cambridge: MIT Press.

Fallenstein, Benja, and Nate Soares. 2015. Vingean Reflection: Reliable Reasoning for
Self-Improving Agents. Technical report 2015–2. Berkeley, CA: Machine Intelligence
Research Institute. https://intelligence.org/files/VingeanReflection.pdf.

Gaifman, Haim. 1964. “Concerning Measures in First Order Calculi.” Israel Journal of
Mathematics 2 (1): 1–18.

Good, Irving John. 1950. Probability and the Weighing of Evidence. London: Charles Griffin.

Hacking, Ian. 1967. “Slightly More Realistic Personal Probability.” Philosophy of Science
34 (4): 311–325.

Hay, Nicholas, Stuart J. Russell, Solomon Eyal Shimony, and David Tolpin. 2012. “Selecting
Computations: Theory and Applications.” In Uncertainty in Artificial Intelligence
(UAI-’12), edited by Nando de Freitas and Kevin Murphy, 346–355.

Hintikka, Jaakko. 1962. Knowledge and Belief. Ithaca, N.Y.: Cornell University Press.

. 1975. “Impossible Possible Worlds Vindicated.” Journal of Philosophical Logic 4
(4): 475–484.

Hutter, Marcus, John W. Lloyd, Kee Siong Ng, and William T. B. Uther. 2013. “Probabilities
on Sentences in an Expressive Logic.” Journal of Applied Logic 11 (4): 386–420.

28

http://intelligence.org/files/Non-Omniscience.pdf
http://intelligence.org/files/Non-Omniscience.pdf
https://intelligence.org/files/VingeanReflection.pdf


Kingma, Diederik P., and Max Welling. 2013. “Auto-Encoding Variational Bayes.” arXiv:
1312.6114 [stat.ML].

Levin, Leonid A. 1974. “Laws of Information Conservation (Nongrowth) and Aspects of
the Foundation of Probability Theory.” Problemy Peredachi Informatsii (3): 30–35.

Li, Nan, William Cushing, Subbarao Kambhampati, and Sungwook Yoon. 2010. “Learning
probabilistic hierarchical task networks to capture user preferences.” arXiv preprint
arXiv:1006.0274.

Pearl, Judea. 1988. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. San Mateo, CA: Morgan Kaufmann.
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