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Abstract

A superintelligent machine would not auto-
matically act as intended: it will act as pro-
grammed, but the fit between human intentions
and formal specification could be poor. We dis-
cuss methods by which a system could be con-
structed to learn what to value. We highlight
open problems specific to inductive value learn-
ing (from labeled training data), and raise a
number of questions about the construction of
systems which model the preferences of their
operators and act accordingly.

1 Introduction

Consider a superintelligent system, in the sense of
Bostrom (2014), tasked with curing cancer by discover-
ing some process which eliminates cancerous cells from
a human body without causing harm to the human (no
easy task to specify in its own right). The resulting
behavior may be quite unsatisfactory. Among the be-
haviors not ruled out by this goal specification are steal-
ing resources, proliferating robotic laboratories at the
expense of the biosphere, and kidnapping human test
subjects.

The intended goal, hopefully, was to cure cancer
without doing any of those things, but computer sys-
tems do not automatically act as intended. Even a
system smart enough to figure out what was intended
is not compelled to act accordingly: human beings,
upon learning that natural selection “intended” sex to
be pleasurable only for purposes of reproduction, do
not thereby conclude that contraceptives are abhor-
rent. While one should not anthropomorphize natu-
ral selection, humans are capable of understanding the
process which created them while being unmotivated to
alter their preferences accordingly. For similar reasons,
when constructing an artificially intelligent system, it is
not sufficient to construct a system intelligent enough
to understand human intentions; the system must also
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be purposefully constructed to pursue them (Bostrom
2014, chap. 8).

How can this be done? Human goals are complex,
culturally laden, and context-dependent. Furthermore,
the notion of “intention” itself may not lend itself to
clean formal specification. By what methods could
an intelligent machine be constructed to reliably learn
what to value and to act as its operators intended?

A superintelligent machine would be useful for its
ability to find plans that its programmers never imag-
ined, to identify shortcuts that they never noticed or
considered. That capability is a double-edged sword:
a machine that is extraordinarily effective at achieving
its goals might have unexpected negative side effects,
as in the case of robotic laboratories damaging the bio-
sphere. There is no simple fix: a superintelligent system
would need to learn detailed information about what is
and isn’t considered valuable, and be motivated by this
knowledge, in order to safely solve even simple tasks.

This value learning problem is the focus of this pa-
per. Section 2 discusses an apparent gap between most
intuitively desirable human goals and attempted sim-
ple formal specifications. Section 3 explores the idea
of frameworks through which a system could be con-
structed to learn concrete goals via induction on labeled
data, and details possible pitfalls and early open prob-
lems. Section 4 explores methods by which systems
could be built to safely assist in this process.

Given a system which is attempting to act as in-
tended, philosophical questions arise: How could a sys-
tem learn to act as intended when the operators them-
selves have poor introspective access to their own goals
and evaluation criteria? These philosophical questions
are discussed briefly in Section 5.

A superintelligent system under the control of a
small group of operators would present a moral hazard
of extraordinary proportions. Is it possible to construct
a system which would act in the interests of not only
its operators, but of all humanity, and possibly all sapi-
ent life? This is a crucial question of philosophy and
ethics, touched upon only briefly in Section 6, which
also motivates a need for caution and then concludes.



2 Valuable Goals Cannot Be Directly
Specified

Many people have an intuition that superintelligent sys-
tems with simple goals can lead to desirable outcomes.
For example, consider Schmidhuber (2007), who sug-
gests that creativity, curiosity, and a desire for discov-
ery and beauty can be instilled by creating systems that
maximize the degree to which past sensory data can be
compressed. “The agent’s goal should be: create action
sequences that extend the observation history and yield
previously unknown / unpredictable but quickly learn-
able algorithmic regularity or compressibility” (Schmid-
huber 2007).

However, most goals that are simple to specify will
not capture all the complexities of human endeavors.
While it is true that human creativity and discovery are
related to the act of compressing observation, an agent
following Schmidhuber’s goal would not be the curious
and creative artificial citizen that may spring to mind.
For example, one simple way to “extend the observation
history and yield previously unknown / unpredictable
but quickly learnable algorithmic regularity” is to ap-
propriate resources and construct artifacts that gener-
ate cryptographic secrets, then present the agent with
a long and complex series of observations encoded from
highly regular data, and then reveal the secret to the
agent. An agent following Schmidhuber’s goal is much
more likely to build artifacts of this form than it is to
pursue anything akin to human creativity.

Building an agent to do something which, in hu-
mans, correlates with the desired behavior, is not likely
to result in a system that acts in a human manner. In-
stead, it is likely to result in an agent with very strange
incentives.

Consider Hibbard (2001), who suggested training
a simple system to recognize positive human emotions
from facial expressions, voice tones, and body language.
Then an intelligent system could be constructed to take
actions which are predicted to lead to many positive hu-
man emotions (as recognized by the recognizer). This
may seem intuitively desirable: wouldn’t such a system
always act to make humans happy? Unfortunately, a
system with Hibbard’s goals would not exhibit the in-
tended behavior: actions that lead to many positive hu-
man emotions (as recognized by the recognizer) would
mostly entail the production of many, many cheap ani-
matronics mimicking positive human emotions in order
to trigger the simple recognizer as much as possible.!

Complex goals are required to specify complex val-
ues (Yudkowsky 2011). Imagine a simplified state space
of possibilities that a system could achieve, with three
axes: (1) count of human-shaped objects emitting
what looks like positive emotion; (2) size of average
human-shaped object emitting what looks like posi-
tive emotion; and (3) average moral worth of human-

1. Hibbard has since acknowledged this flaw in his sug-
gestion (Hibbard 2012).

shaped objects emitting what looks like positive emo-
tion. Most of human experience has occurred in a small
region of this space, the region where almost all human-
shaped objects emitting what looks like positive emo-
tion are ~ 2-meter-sized humans with moral weight.
But the highest scores on the count axis occur in tan-
dem with low size, and the smallest possible systems
that can mimic outward signs of emotion are of low
moral worth.

In linear programming, it is a theorem that the max-
imum of an objective function occurs on a vertex of the
space. (Sometimes the maximum will be on an edge,
including its vertexes.) For intuitively similar reasons,
the optimal solution to a goal tends to occur on a ver-
tex (or edge, or hyperface) of the possibility space. Hib-
bard’s goal does not contain any information about size
or moral worth, and so agents pursuing this goal only
consider size and moral worth insofar as they pertain
to pushing toward the hyperface of maximum count.
To quote Russell (2014), “a system that is optimizing a
function of n variables, where the objective depends on
a subset of size k < n, will often set the remaining un-
constrained variables to extreme values; if one of those
unconstrained variables is actually something we care
about, the solution found may be highly undesirable.”
Bostrom (2014, chap. 8) calls this phenomenon “per-
verse instantiation.” The problem is not that the agent
is deliberately misinterpreting its goals, the problem is
that the goals do not contain information about all rel-
evant dimensions; the agent has been directed towards
the wrong hyperface of the possibility space.?

When confronted with the possibility of perverse in-
stantiation, many have an impulse to patch the flawed
goals. If Hibbard’s system would make animatronics,
then require that the emotions come from actual hu-
mans. If the system would then drug humans, then
forbid it from using drugs. Such constraints cut off
causal pathways that the system could use to get a
higher count, but they don’t address the problem that
the system is still maximizing count. If one causal path-
way is forbidden, then the system will follow the nearest
non-forbidden neighboring causal path (such as directly
manipulating the pleasure centers of human brains). It
is neither feasible nor safe to attempt to patch the goals
until it seems that all causal pathways to imagined bad
outcomes have been ruled out. The system would still
be searching for ways to achieve outcomes that humans
regard as bad. Even if the search is expected to come
up empty, constructing such a system is imprudent.

Simple genetic algorithms can already achieve so-
lutions in unexpected ways. Consider the algorithm
of Bird and Layzell (2002), tasked with the develop-
ment of an oscillating circuit. The algorithm would
have produced a standalone oscillating circuit in test

2. Instead of trying to direct the system toward exactly
the right hyperface, why not try to create a “limited op-
timization” system that doesn’t push so hard in whatever
direction it moves? This seems like a promising research
avenue, but is beyond the scope of this paper.



scenarios, when run on an abstract representation of a
circuit board containing all the features of the possi-
bility space that humans thought were relevant. But
when the algorithm operated in reality, it made use of
dimensions of the possibility space that humans never
considered: It repurposed the printed circuit tracks on
its motherboard as a makeshift radio, which it used to
amplify signals from nearby machines.

Even if the optimal way to satisfy the goals among
all possibilities that humans have imagined seems like
a high-value state, we cannot guarantee that we have
visualized all possible candidates, and the actual solu-
tion found by superintelligent search may not be high-
value. The highest scoring solution relative to Schmid-
huber’s compression-of-sensory-information goal corre-
sponds not to the “typical” case (pursuing discovery)
but to a “weird” edge-case (constructing artifacts that
produce encryptions of regular data and then reveal the
encryption key). This is the problem of unforeseen maz-
imums: a fit between a formal goal and a high-value
solution is difficult to achieve and difficult to verify.

The fragility of wvalue thesis (Yudkowsky 2011)
states that human values are both complex (in the sense
that there is not a simple seed such as “compress sen-
sory information” from which all components of value
follow) and fragile (in the sense that a failure along
one dimension, such as “too little respect for freedom,”
could destroy nearly all the available value). Motivating
this thesis is beyond the scope of this paper, but assum-
ing this thesis is correct, there are many dimensions of
value (and relations between them) that must be pre-
cisely specified in order to formalize a goal which (when
pursued) leads to a valuable outcome. Some dimensions
may be difficult to identify, and each dimension might
present a separate challenge of perverse instantiation.
Assuming that value is fragile, correctly specifying what
to value by hand is difficult if not impossible.

3 Inductive Value Learning

Correctly specifying a formal criterion for recognizing
a cat in a video stream by hand is difficult if not im-
possible, but that does not mean that cat recognition is
hopeless. It means that a level of indirection is required:
a trainable recognition system can be constructed and
trained to recognize cats. The value learning problem
could be approached using a similar sort of indirection.
Inductive value learning (via labeled training data)
raises a number of difficulties. A visual recognition sys-
tem classifies images; an inductive value learning sys-
tem classifies outcomes. What are outcomes? What
format would a value-learning data set come in?3

3. Why not specify a reward function in terms of obser-
vations, allowing the user to control rewards via a reward
signal and reinforcement learning techniques? Given suffi-
cient intelligence, this would result in a system which be-
haves as intended only until it can gain decisive control over
its reward channel (Bostrom 2014, chap. 12). In order to

Imagine a powerfully intelligent system which takes
significant amounts of data and builds a causal model of
its universe. Imagine also that this world model can be
used to reason about the probable outcomes achievable
via the agent’s available actions, and that the system
has some method for rating outcomes and is constructed
to execute the action leading to the best outcome. In
order for the system to inductively learn what to value,
the system must be designed so that, when certain ob-
servations are made (or certain updates to the world-
model happen), labeled training data extracted from
the observation or update modifies the ratings assigned
to various potential outcomes.

This is a simplification, to be sure, but it highlights
a central concern and two open questions relevant to
inductive value learning.

3.1 Corrigibility

Imagine that some of the available actions allow the sys-
tem to modify itself, and that it currently assigns high
utility to outcomes which contain many animatronic
faux-humans mimicking happiness. It may be the case
that, according to the system’s world-model, all of the
following hold: (1) if more training data is received,
those high-rated outcomes will have their ratings ad-
justed downwards; (2) after the ratings are adjusted,
the system will achieve outcomes that have fewer cheap
animatronics; and (3) there are actions available which
remove the inductive value learning framework.

This system might execute actions which remove its
value learning framework. It would not automatically
consider its own value learning framework a good thing;
if it were constructed to execute the highest-rated ac-
tions then it would simply execute the highest-rated
actions. One could try to construct protected sections
of code to prevent the value learning framework from
being modified, but these constraints would be diffi-
cult to trust once the system is sufficiently powerful to
model itself and consider self-modification. In the name
of safety, the initial system should be constructed in
such a way that actions which remove the value learning
framework are poorly rated even if they are available.
Some preliminary efforts toward describing a system
with this property have been discussed under the head-
ing of corrigibility by Soares and Fallenstein (2015), but
no complete proposals currently exist.

3.2 Ontology Identification

The representations used in the system’s world model
may shift over time. The inductive value learning must
result in a system which not only classifies potential
outcomes according to their value, but which continues

construct a superintelligent system that achieves valuable
real-world outcomes, the system must have goals specified
in terms of desirable outcomes rather than rewards specified
in terms of observation. (For further discussion, see Soares
[2015].)



to do so correctly even when the structure of a potential
outcome undergoes a drastic shift.

An example helps to make the difficulty clear. Imag-
ine programmers training a system to pursue a very
simple goal: produce diamond. The programmers have
an atomic model of physics, and they generate training
data labeled according to the number of carbon atoms
covalently bound to four other carbon atoms in that
training outcome. In order for this training data to
be used, the classification algorithm needs to identify
the atoms in a potential outcome considered by the
system—say that the programmers look at the struc-
ture of the initial world model and hard-code a tool for
identifying the atoms within. Now what happens when
the system develops a nuclear model of physics, in which
the ontology of the universe now contains no primi-
tive atoms but instead primitive protons, neutrons, and
electrons? The system might fail to identify any carbon
atoms in the new world-model, making the system in-
different between all outcomes in the dominant hypoth-
esis. Its actions would then be dominated by the tiny
remaining probabilities that it is in a universe where
fundamental carbon atoms are hiding somewhere.

This is clearly undesirable: ideally, a system should
be able to deduce that nuclei containing six protons
are the true carbon atoms, but how can this be done?
In order to create a system which classifies potential
outcomes according to how much diamond is in them,
the system needs some mechanism for identifying the
intended ontology of the training data within the po-
tential outcomes as currently modeled by the AI. This
is the ontology identification problem introduced by de
Blanc (2011) and further discussed by Soares (2015).

Inductive value learning requires more than the con-
struction of an outcome-classifier from value-labeled
training data. The system must also have some method
for identifying, inside the states or potential states de-
scribed in its world-model, the referents of the labels in
the training data. Furthermore, this method needs to
be robust against changes in the world-model (de Blanc
2011).

This could perhaps be done during the course of
inductive value learning. The system’s methods for in-
ferring a causal world-model from sense data could per-
haps be repurposed to infer a description of what has
been labeled. Then, if the system infers a better world-
model underlying all sense data, it could re-interpret
the training data to re-bind the value labels.

This seems like a promising research approach, but
it seems to us to require new ideas before it is close
to being formalizable, let alone usable in practice. In
particular, we suspect that ontology identification is
likely to require a better understanding of algorithms
which build multi-level world models from sense data—
we usually don’t think about most things in our envi-
ronment on the atomic level, and these higher levels of
representation seem relevant for describing goals. With
a better understanding of multi-level representations,
one could study methods for reliably identifying the in-

tended referents of a label at the right level in a world
model (even if the states labeled in the training data
do not cleanly correspond to any particular level in the
world model of the system). At present, any research
into the construction of multi-level world models from
sense data could yield progress.

3.3 Unforeseen Inductions

When training a recognition system, producing satis-
factory training data is often a difficult task. There is a
classic parable of machine learning told by, e.g., Dreyfus
and Dreyfus (1992) of an algorithm intended to classify
whether or not pictures of woods contained a tank con-
cealed between the trees. Pictures of empty woods were
taken one day; pictures with concealed tanks were taken
the next. The classifier identified the latter set with
great accuracy, and tested extremely well on the por-
tion of the data that had been withheld from training.
However, the system performed poorly on new images.
The first set of pictures were taken on a sunny day,
whereas the latter were taken on a cloudy day. The
classifier was not identifying tanks, it was identifying
image brightness!

The same mistake is possible when constructing a
training data set for inductive value learning. With
value learning, however, the mistakes could be both
dangerous and difficult to notice.

Consider a training set which successfully references
real-world cases of happy human beings (labeled with
high ratings) and real-world cases of pointless human
suffering (rated poorly). The simplest generalization
from this data may, again, be that human-shaped-
things-proclaiming-happiness are of great value, and
this may lead the system to construct animatronics imi-
tating happiness. It seems entirely plausible that some-
one attempting inductive value learning could neglect
to put in any observations of animatronic things mim-
icking happiness and labeled as low-value. How many
other “too obvious” insights are hiding squarely in our
anthropocentric blind spots?

Concerns about perverse instantiation arise again
when constructing a training set for inductive value
learning: a training set that covers all relevant dimen-
sions that we can think of may not cover all relevant
dimensions. If an inductive value learner is to be safe,
the system needs to be able to identify new plausibly-
relevant dimensions along which no training data is pro-
vided, and query the operators about these ambiguities.

This is another open problem: given a data set
which classifies outcomes in terms of some world model,
how can dimensions along which the data set gives little
information be identified?

Ambiguity identification may be difficult to do cor-
rectly. It is easy to imagine a system which receives
value-labeled training data, and then spends the first
week querying about wind patterns, and spends the sec-
ond week querying about elevation differentials, only
to query whether brains are necessary long after the



programmers lost interest. There is an intuitive sense
in which humans “obviously” care about whether the
human-shaped-things have brains more than we care
about whether the people are on mountains, but it may
not be obvious to the system.

One way to approach the problem is to study how
humans learn concepts from sparse data, as discussed
by Tenenbaum et al. (2011) and further by Sotala
(forthcoming). Alternatively, it may be possible to find
some other compact criterion for identifying ambigui-
ties in a simpler fashion. In both cases, further research
into ambiguity identification could prove fruitful.

4 Acting as Intended

The problem of ambiguity identification may motivate
the need for methods beyond inductive value learning.
An intelligent system with a sufficiently refined model
of humans may already have the data needed, given
that the right question is asked, to deduce that hu-
mans are more likely to care about whether happy-
looking human-shaped things have brains than about
the breezes nearby. The trouble would be designing the
system to use this information in exactly the right way.

As before, picture a system that builds multi-level
environment models from sense data and has a frame-
work for inductive value learning. One could then spe-
cially demarcate some part of the model as the “model
of the operator,” define some explicit rules for extract-
ing the model of the preferences from the model of the
operator (in terms of possible outcomes), and add a
framework which alters the ratings on various outcomes
in accordance with the model of the preferences. This
would be a system which attempts to act as intended;
a “do what I mean” (DWIM) architecture.

The inverse reinforcement learning (IRL) tech-
niques of Ng and Russell (2000) can be viewed as a
DWIM approach, in which an agent attempts to iden-
tify and maximize the reward function of some other
agent in the environment. However, existing IRL for-
malizations do not capture the full problem: the pref-
erences of humans cannot necessarily be captured in
terms of observations alone. Imagine a human operator
who has a friend that must be put into hiding. The
operated system may either take the friend to safety, or
may abandon the friend in a dangerous location and use
the resources saved in this way to improve the opera-
tor’s life. If the system reports that the friend is safe in
both cases, and the human operator trusts the system,
then the latter observation history may be preferred by
the operator. However, the latter outcome would defi-
nitely not be preferred by most people if they had direct
knowledge of the underlying world-state.

Human preferences are complex, multi-faceted, and
often contradictory, and safely extracting preferences
from a model of a human is no easy task. Here prob-
lems of ontology identification arise again: the frame-
work for extracting preferences and affecting outcome-

ratings needs to be robust against drastic changes in
the operator-model. The special-case identification of
the “operator model” must survive as the system goes
from modeling the operator as a simple reward-function
to modeling the operator as a fuzzy, ever-changing part
of reality built out of biological cells which are made of
atoms which arise from quantum fields (and so on).

DWIM architectures must avoid a number of other
hazards, as well. Suppose the system models the fact
that its operator-model affects its outcome ratings, and
the system has available to it actions which affect the
operator. Then actions which manipulate the operator
to make their preferences easier to fulfill may be highly
rated, as they lead to highly-rated outcomes (where the
system achieves the operator’s now-easy goals). Solving
this problem is not so simple as forbidding the system
from affecting the operator: any query made by the sys-
tem to the operator in order to resolve some ambiguity
will affect the operator in some way.

The benefit of a DWIM architecture is that it would
allow systems to induce human preferences and act
accordingly. Such an architecture requires significant
additional complexity on top of inductive value learn-
ing: the learning system no longer simply classifies
outcomes, it also models humans and extracts human
preferences about human-modeled outcomes. What
this complexity purchases is a system which potentially
achieves full, direct coverage of the complexity of hu-
man value, without relying on the abilities of the pro-
grammers to hand-code everything or compose the ex-
actly right training-set.

This capability seems critical in the long run, but
hard to make immediate research progress upon. Per-
haps if a wide space of goal-optimizing procedures is
identified, within which learning of particular goal-
optimizing procedures is possible, then it might be pos-
sible to specify a system that inductively learns how
to act as intended. This would be a doubly indirect
approach: a hand-coded inductive system would learn
from labeled data how to engage in the DWIM proce-
dure that it would use to model operators and act ac-
cording to its model of the operators’ intentions. This
would potentially place high demands on corrigibility
and the ability to construct systems that behave cau-
tiously in the face of uncertainty.

Further investigations into inverse reinforcement
learning (or other methods of constructing satisfactory
initial operator-models) may also be a good start on
this open problem.

5 Extrapolating Volition

A DWIM architecture may be sufficient when con-
structing a system which reliably pursues “concrete”
goals (such as “cure cancer and then await instruc-
tion”), but it may not be sufficient for more complex or
sophisticated goals where the operators themselves do
not know what they intend (such as “do what I would



want, if I had more knowledge and time to think”).
None of the goal structures discussed so far seem pow-
erful enough to learn or to capture sophisticated philo-
sophical concepts such as an “ideal advisor theory”
(Rosati 1995) or the “reflective equilibrium” of Rawls
(1971).

In order to resolve normative uncertainty (e.g.
about what the operator would want if they were “bet-
ter”), one possible approach would be to build a DWIM
system that takes a model of a human operator and ex-
trapolates it in the direction of e.g. Rawls’ reflective
equilibrium. For example, the extrapolation might pre-
dict what the operator would decide if they knew ev-
erything the system knows, or if they had considered
many possible moral arguments (Bostrom 2014, chap.
13).

However, a high-powered system searching for moral
arguments that would put the operators into a reflec-
tively stable state (as a computational expedient to
fully simulating the operators reflecting) adds a new
layer of potential pitfalls.* A high-powered search for
the most persuasive moral arguments that elicit ret-
rospective approval of moral changes might find argu-
ments that induce psychotic breakdowns or religious
conversions. The system should be constrained to
search for only “valid” moral arguments, but defining
what counts as a valid moral argument begs the ques-
tion. It is hard for humans to know in advance what
sorts of arguments will persuade them, and it seems in-
feasible to consider all potentially persuasive arguments
and categorize them as “valid” or “invalid” forms of
persuasion.

In this domain, querying for ambiguities is difficult:
In everyday practice, an argument that is persuasive to
smart and skeptical humans is often valid, but a super-
intelligent search for persuasive arguments may well dis-
cover invalid but extremely persuasive arguments. To
expose a human operator to an extremely persuasive
moral argument uncovered by superintelligent search,
and ask for its label as valid or invalid, may invalidate
the resulting label if the argument was in fact invalid
but very persuasive. This poses a dilemma for training
and validating any system that queries what types of
moral arguments should be considered valid persuasion.

A similar set of problems holds for asking a superin-
telligence to help resolve normatively-laden philosophi-
cal questions, such as about what role the notion of con-
sciousness ought to play in value judgments. An obvi-
ous but problematic approach would be to task a super-
intelligent system with producing a philosophical paper
on consciousness that a human would find extremely
persuasive, or a paper that would make a human feel

4. Ethical issues arise when constructing a system that
reasons about what its operators would decide if they had
more time to think: a sufficiently powerful system might
simulate its operators taking the time to think, and a very
high-fidelity simulation might be sentient. This concern
touches on philosophical questions that are beyond the scope
of this paper.

they had fully understood the problem. Again, in every-
day practice, persuasiveness and validity are correlated,
but a superintelligent search for an extremely persua-
sive paper might not pick out a valid one.

The resolution of normative uncertainty seems dif-
ficult and potentially dangerous, but it becomes espe-
cially important if a superintelligent system is intended
to have a large amount of control over the future. This
is the motivation for approaches that Bostrom (2014,
chap. 13) terms “indirect normativity,” by which an
agent could learn how to resolve normative uncertainty
indirectly.

It is difficult to identify technical approaches to in-
direct normativity that are tractable today, although
some attempts have been made. Christiano (2014) in-
formally proposes one mechanism by which a system
could perhaps safely extrapolate the volition of its op-
erator. Fallenstein and Stiennon (2014) have begun
examining toy models in which agents operate under
uncertainty about which utility function is the “true”
utility function; such problems bear a strong resem-
blance to voter aggregation problems. MacAskill (2014)
has given an extensive report on “meta-normativity,”
touching upon many different philosophical aspects of
the difficulties of resolving normative uncertainty. Fur-
ther philosophical study could lead to progress.

6 Discussion

Just as human intelligence has allowed the development
of tools and strategies which grant humanity control
over the environment, so too could superintelligent sys-
tems develop tools and strategies more powerful than
our own (Bostrom 2014, chap. 6). It is not clear how
long the development of superintelligence will take, and
machine superintelligence may not be the first form of
superintelligence constructed. But if it is, and if early
superintelligent systems are aligned with human inter-
ests, then they will likely be controlled by very small
groups of humans. Be it one team controlling one su-
perintelligent system or dozens of companies control-
ling dozens, the development of controllable superintel-
ligence could put the future of humanity into the hands
of a shockingly tiny group of people. This introduces a
moral hazard of sizable proportions.

If any system is to gain significant control over the
future, then it is imperative that the system be con-
structed to act according to the interests of not only
its operators, but all humanity, and perhaps all sapi-
ent beings. This, of course, raises yet more questions:
How are conflicting preferences resolved? Are children
counted? Are animals? Future people? Past people?
Again, these are problems of philosophy and are diffi-
cult to approach at present. Nevertheless, those who
develop the first superintelligent systems take on a siz-
able responsibility.

That responsibility also demands extreme caution
when developing systems intended for superintelligence.



A bug in the value system of a superintelligent agent
could be catastrophic, especially if the bug caused the
agent to resist correction. Testing alone is not enough:
If any important dimensions of value are neglected in
the training set, they are likely to also be neglected in
the testing environment. Furthermore, a system which
models the fact that it is under observation and that its
operators do not approve of its preferences, it may well
pass all tests, as passing all tests is the only available
strategy by which it may exit the testing environment
and pursue its actual goals in the world at large. Testing
is useful for catching early bugs that occur in settings
similar to the test environment; this is essential, but it
is not alone enough to gain confidence that the system
will work well in reality and in the long run.

Given the enormity of the stakes and the difficulty
of writing bug-free software, every available precaution
must be taken when constructing superintelligent sys-
tems. The system must be corrigible; that is, the struc-
ture of its goal system should avert any instrumental
incentives to manipulate or deceive its operators, and
the system should not resist operator correction or shut-
down. Its world model and its decision procedure must
be transparent, so that the system may be monitored
for hints of manipulation and deception anyway. The
system might be “domestic,” in the sense of Bostrom
(2014, chap. 9), such that its goals would lead it to
have only a low impact on the world, if it were to es-
cape. Other safety precautions should be taken, in case
clever structuring of the goal system fails to yield a safe
system (though failure of the goal system implies that
other safety measures may face superintelligent oppo-
sition). For further discussion on the design of highly
reliable agents, see Soares and Fallenstein (2014).

Value learning is but one component of a safe super-
intelligent system. That said, successful value learning
is of critical importance, for while all other precautions
exist to prevent disaster, it is value learning which could
enable success.
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